摘要
To improve the accuracy of predicting non-invasive blood glucose concentration in the near-infrared spectrum, we utilized the Particle Swarm Optimization (PSO) algorithm to optimize hyperparameters for the Multi-Kernel Learning Support Vector Machine (MKL-SVR). With these optimized hyperparameters, we established a non-invasive blood glucose regression model, referred to as the PSO-MKL-SVR model. Subsequently, we conducted a comparative analysis between the PSO-MKL-SVR model and the PSO-SVR model. In a dataset comprising ten volunteers, the PSO-MKL-SVR model exhibited significant precision improvements, including a 16.03% reduction in Mean Square Error and a 0.29% increase in the Squared Correlation Coefficient. Moreover, there was a 0.14% higher probability of the Clark’s Error Grid Analysis falling within Zone A. Additionally, the PSO-MKL-SVR model demonstrated a faster operational speed compared to the PSO-SVR model.
To improve the accuracy of predicting non-invasive blood glucose concentration in the near-infrared spectrum, we utilized the Particle Swarm Optimization (PSO) algorithm to optimize hyperparameters for the Multi-Kernel Learning Support Vector Machine (MKL-SVR). With these optimized hyperparameters, we established a non-invasive blood glucose regression model, referred to as the PSO-MKL-SVR model. Subsequently, we conducted a comparative analysis between the PSO-MKL-SVR model and the PSO-SVR model. In a dataset comprising ten volunteers, the PSO-MKL-SVR model exhibited significant precision improvements, including a 16.03% reduction in Mean Square Error and a 0.29% increase in the Squared Correlation Coefficient. Moreover, there was a 0.14% higher probability of the Clark’s Error Grid Analysis falling within Zone A. Additionally, the PSO-MKL-SVR model demonstrated a faster operational speed compared to the PSO-SVR model.
作者
Xinjia Yang
Linhua Zhou
Xinjia Yang;Linhua Zhou(School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun, China)