期刊文献+

Variational Approach to Heat Conduction Modeling

Variational Approach to Heat Conduction Modeling
下载PDF
导出
摘要 It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. This is unacceptable on physical grounds in spite of the fact that Fourier’s law agrees well with experiment. However, discrepancies are likely to occur when extremely short distances or extremely short time intervals are considered, as they must in some modern problems of aero-thermodynamics. Cattaneo and independently Vernotte proved that such process can be described by Heaviside’s telegraph equation. This paper shows that this fact can be derived using calculus of variations, by application of the Euler-Lagrange equation. So, we proved that the equation of heat conduction with finite velocity propagation of the thermal disturbance can be obtained as a solution to one variational problem. It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. This is unacceptable on physical grounds in spite of the fact that Fourier’s law agrees well with experiment. However, discrepancies are likely to occur when extremely short distances or extremely short time intervals are considered, as they must in some modern problems of aero-thermodynamics. Cattaneo and independently Vernotte proved that such process can be described by Heaviside’s telegraph equation. This paper shows that this fact can be derived using calculus of variations, by application of the Euler-Lagrange equation. So, we proved that the equation of heat conduction with finite velocity propagation of the thermal disturbance can be obtained as a solution to one variational problem.
作者 Slavko Đurić Ivan Aranđelović Milan Milotić Slavko Đurić;Ivan Aranđelović;Milan Milotić(Faculty of Traffic Engineering, University of East Sarajevo, Doboj, Bosnia and Herzegovina;Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Republic of Serbia)
出处 《Journal of Applied Mathematics and Physics》 2024年第1期234-248,共15页 应用数学与应用物理(英文)
关键词 Telegraph Equation Heat Equation Heat Conduction Calculus of Variations Telegraph Equation Heat Equation Heat Conduction Calculus of Variations
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部