期刊文献+

The Real Reason Why the Electron’s Bare g-Factor Is 2 Times Classical 被引量:1

The Real Reason Why the Electron’s Bare g-Factor Is 2 Times Classical
下载PDF
导出
摘要 When analyzing an Electron’s orbit’s and movements, a “classical” bare g-factor of “1” must be used, but when analyzing just the Electron itself, a bare g-factor and gyromagnetic ratio of twice the “classical” value is needed to fit reality. Nobody has fully explained this yet. By examining the electromagnetic wave nature of the electron, it is possible to show a simple reason why its bare g-factor must be 2, without resorting to superluminal velocities or dismissing it as mystically intrinsic. A simple charged electromagnetic wave loop (CEWL) model of the electron that maintains the same electromagnetic wave nature as the high-energy photons from which electron-positron pairs form, will have exactly half of its energy in the form of magnetic energy who’s field lines are perpendicular to the direction of the charge rotation, which leads to the conclusion that only half of the electron’s electromagnetic mass is rotational mass, from which it is easy to calculate a bare g-factor of 2 using Feynman’s equation for the electron’s g-factor. When analyzing an Electron’s orbit’s and movements, a “classical” bare g-factor of “1” must be used, but when analyzing just the Electron itself, a bare g-factor and gyromagnetic ratio of twice the “classical” value is needed to fit reality. Nobody has fully explained this yet. By examining the electromagnetic wave nature of the electron, it is possible to show a simple reason why its bare g-factor must be 2, without resorting to superluminal velocities or dismissing it as mystically intrinsic. A simple charged electromagnetic wave loop (CEWL) model of the electron that maintains the same electromagnetic wave nature as the high-energy photons from which electron-positron pairs form, will have exactly half of its energy in the form of magnetic energy who’s field lines are perpendicular to the direction of the charge rotation, which leads to the conclusion that only half of the electron’s electromagnetic mass is rotational mass, from which it is easy to calculate a bare g-factor of 2 using Feynman’s equation for the electron’s g-factor.
作者 Donald Bowen Donald Bowen(Independent Researcher, Concord, MA, USA)
机构地区 Independent Researcher
出处 《Journal of Modern Physics》 2016年第10期1200-1209,共10页 现代物理(英文)
关键词 Electron g-Factor Magnetic Moment Spin Angular Momentum Magnetic Energy Charged Electromagnetic Wave Loop CEWL Pair Production General Relativity Mass de Broglie Wave Electron g-Factor Magnetic Moment Spin Angular Momentum Magnetic Energy Charged Electromagnetic Wave Loop CEWL Pair Production General Relativity Mass de Broglie Wave
  • 相关文献

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部