摘要
The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements.
The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements.
作者
Mohamed S. El Naschie
Mohamed S. El Naschie(Department of Physics, University of Alexandria, Alexandria, Egypt)