期刊文献+

DNA Barcoding of Insects and Its Direct Application for Plant Protection

DNA Barcoding of Insects and Its Direct Application for Plant Protection
下载PDF
导出
摘要 The introduction of invasive insect pests across national borders has become a major concern in crop production. Accordingly, national plant protection organizations are challenge to reinforce their monitoring strategies, which are hampered by the weight and size of inspection equipment, as well as the taxonomic extensiveness of interrupted species. Moreover, some insect pests that impede farmer productivity and profitability are difficult for researchers to address on time due to a lack of appropriate plant protection measures. Farmers’ reliance on synthetic pesticides and biocontrol agents has resulted in major economic and environmental ramifications. DNA barcoding is a novel technology that has the potential to improve Integrated Pest Management decision-making, which is dependent on the ability to correctly identify pest and beneficial organisms. This is due to some natural traits such as phenology or pesticide susceptibility browbeaten by IPM strategies to avert pest establishment. Specifically, Deoxyribonucleic acid (DNA) sequence information was applied effectively for the identification of some micro-organisms. This technology, DNA barcoding, allows for the identification of insect species by using short, standardized gene sequences. DNA barcoding is basically based on repeatable and accessible technique that allows for the mechanisation or automation of species discrimination. This technique bridges the taxonomic bio-security gap and meets the International Plant Protection Convention diagnostic standards for insect identification. This review therefore discusses DNA barcoding as a technique for insect pests’ identification and its potential application for crop protection. The introduction of invasive insect pests across national borders has become a major concern in crop production. Accordingly, national plant protection organizations are challenge to reinforce their monitoring strategies, which are hampered by the weight and size of inspection equipment, as well as the taxonomic extensiveness of interrupted species. Moreover, some insect pests that impede farmer productivity and profitability are difficult for researchers to address on time due to a lack of appropriate plant protection measures. Farmers’ reliance on synthetic pesticides and biocontrol agents has resulted in major economic and environmental ramifications. DNA barcoding is a novel technology that has the potential to improve Integrated Pest Management decision-making, which is dependent on the ability to correctly identify pest and beneficial organisms. This is due to some natural traits such as phenology or pesticide susceptibility browbeaten by IPM strategies to avert pest establishment. Specifically, Deoxyribonucleic acid (DNA) sequence information was applied effectively for the identification of some micro-organisms. This technology, DNA barcoding, allows for the identification of insect species by using short, standardized gene sequences. DNA barcoding is basically based on repeatable and accessible technique that allows for the mechanisation or automation of species discrimination. This technique bridges the taxonomic bio-security gap and meets the International Plant Protection Convention diagnostic standards for insect identification. This review therefore discusses DNA barcoding as a technique for insect pests’ identification and its potential application for crop protection.
作者 Peter Quandahor Iddrisu Yahaya Francis Kusi Issah Sugri Julius Yirzagla Abdul Karim Alhassan Jerry A. Nboyine George Y. Mahama Godwin Opoku Mohammed Mujitaba Dawuda Asieku Yahaya Theophilus Kwabla Tengey Rofela Combey John Abraham Peter Quandahor;Iddrisu Yahaya;Francis Kusi;Issah Sugri;Julius Yirzagla;Abdul Karim Alhassan;Jerry A. Nboyine;George Y. Mahama;Godwin Opoku;Mohammed Mujitaba Dawuda;Asieku Yahaya;Theophilus Kwabla Tengey;Rofela Combey;John Abraham(CSIR-Savanna Agricultural Research Institute, Tamale, Ghana;Faculty of Agriculture, Food and Consumer Science, University for Development Studies, Tamale, Ghan;Department of Conservational Biology and Entomology, School of Biological Sciences, University of Cape Coast, Ghana)
出处 《Open Journal of Applied Sciences》 2024年第3期676-686,共11页 应用科学(英文)
关键词 DNA Barcoding Integrated Pest Management TAXONOMY BIOSECURITY Crop Protection DNA Barcoding Integrated Pest Management Taxonomy Biosecurity Crop Protection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部