摘要
Linear source location of acoustic emission (AE) technique has been applied in the present paper for finding the source of material damage under fatigue loading. A plate type structure of ductile cast iron has been used to undergo fatigue damage in a servopulsing machine in the experiment. AE sensors were attached to the specimen for getting the time delay of AE signal propagations through the specimen. After receiving the time delay data of AE signals due to the damage initiation in the material for the provided fatigue loads, linear source location algorithm has been applied and the crack positions are identified. Before applying the technique, a series of pencil lead breaks (PLBs) tests have been conducted upon a ductile cast iron plate of same dimension for verifying the applied algorithm. According to the PLBs varification, the failure location of ductile cast iron (pearlite type) due to the fatigue loading has been characterized. In both experiments, the active ability of the proposed technique for source location of structural damage has been identified clearly and successfully.
Linear source location of acoustic emission (AE) technique has been applied in the present paper for finding the source of material damage under fatigue loading. A plate type structure of ductile cast iron has been used to undergo fatigue damage in a servopulsing machine in the experiment. AE sensors were attached to the specimen for getting the time delay of AE signal propagations through the specimen. After receiving the time delay data of AE signals due to the damage initiation in the material for the provided fatigue loads, linear source location algorithm has been applied and the crack positions are identified. Before applying the technique, a series of pencil lead breaks (PLBs) tests have been conducted upon a ductile cast iron plate of same dimension for verifying the applied algorithm. According to the PLBs varification, the failure location of ductile cast iron (pearlite type) due to the fatigue loading has been characterized. In both experiments, the active ability of the proposed technique for source location of structural damage has been identified clearly and successfully.