期刊文献+

A Theoretical Solution for the Reynolds Stress: Validations in Canonical Flow Geometries

A Theoretical Solution for the Reynolds Stress: Validations in Canonical Flow Geometries
下载PDF
导出
摘要 A theoretical approach is developed for solving for the Reynolds stress in turbulent flows, and is validated for canonical flow geometries (flow over a flat plate, rectangular channel flow, and free turbulent jet). The theory is based on the turbulence momentum equation cast in a coordinate frame moving with the mean flow. The formulation leads to an ordinary differential equation for the Reynolds stress, which can either be integrated to provide parameterization in terms of turbulence parameters or can be solved numerically for closure in simple geometries. Results thus far indicate that the good agreement between the current theoretical and experimental/DNS (direct numerical simulation) data is not a fortuitous coincidence, and in the least it works quite well in sensible ways in canonical flow geometries. A closed-form solution for the Reynolds stress is found in terms of the root variables, such as the mean velocity, velocity gradient, turbulence kinetic energy and a viscous term. The form of the solution also provides radically new insight on how the Reynolds stress is generated and distributed. A theoretical approach is developed for solving for the Reynolds stress in turbulent flows, and is validated for canonical flow geometries (flow over a flat plate, rectangular channel flow, and free turbulent jet). The theory is based on the turbulence momentum equation cast in a coordinate frame moving with the mean flow. The formulation leads to an ordinary differential equation for the Reynolds stress, which can either be integrated to provide parameterization in terms of turbulence parameters or can be solved numerically for closure in simple geometries. Results thus far indicate that the good agreement between the current theoretical and experimental/DNS (direct numerical simulation) data is not a fortuitous coincidence, and in the least it works quite well in sensible ways in canonical flow geometries. A closed-form solution for the Reynolds stress is found in terms of the root variables, such as the mean velocity, velocity gradient, turbulence kinetic energy and a viscous term. The form of the solution also provides radically new insight on how the Reynolds stress is generated and distributed.
作者 Taewoo Lee Taewoo Lee(Mechanical and Aerospace Engineering, SEMTE Arizona State University, Tempe, USA)
出处 《Open Journal of Fluid Dynamics》 2016年第4期272-278,共7页 流体动力学(英文)
关键词 Turbulence Theory Turbulence Theory
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部