摘要
We propose a probabilistic approach to modelling the propagation of the coronavirus disease 2019 (COVID-19) in Madagascar, with all its specificities. With the strategy of the Malagasy state, which consists of isolating all suspected cases and hospitalized confirmed case, we get an epidemic model with seven compartments: susceptible (S), Exposed (E), Infected (I), Asymptomatic (A), Hospitalized (H), Cured (C) and Death (D). In addition to the classical deterministic models used in epidemiology, the stochastic model offers a natural representation of the evolution of the COVID-19 epidemic. We inferred <span><span style="font-family:Verdana;">the models with the official data provided by the COVID-19 Command Center (CCO) of Madagascar, between March and August 2020. The basic reproduction number <i></i></span><i><i><span style="font-family:Verdana;">R<sub></sub></span></i></i></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"><sub>0</sub></span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"></span></span></span></i> and the other parameters were estimated with a Bayesian approach. We developed an algorithm that allows having a temporal estimate of this number with confidence intervals. The estimated values are slightly lower than the international references. Generally, we were able to obtain a simple but effective model to describe the spread of the disease.
We propose a probabilistic approach to modelling the propagation of the coronavirus disease 2019 (COVID-19) in Madagascar, with all its specificities. With the strategy of the Malagasy state, which consists of isolating all suspected cases and hospitalized confirmed case, we get an epidemic model with seven compartments: susceptible (S), Exposed (E), Infected (I), Asymptomatic (A), Hospitalized (H), Cured (C) and Death (D). In addition to the classical deterministic models used in epidemiology, the stochastic model offers a natural representation of the evolution of the COVID-19 epidemic. We inferred <span><span style="font-family:Verdana;">the models with the official data provided by the COVID-19 Command Center (CCO) of Madagascar, between March and August 2020. The basic reproduction number <i></i></span><i><i><span style="font-family:Verdana;">R<sub></sub></span></i></i></span><i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"><sub>0</sub></span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><i><span style="font-family:Verdana;"></span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"></span></span></span></i> and the other parameters were estimated with a Bayesian approach. We developed an algorithm that allows having a temporal estimate of this number with confidence intervals. The estimated values are slightly lower than the international references. Generally, we were able to obtain a simple but effective model to describe the spread of the disease.