摘要
Using Green’s function method, the frequency dependence of optical conductivities of high-quality MgB2 film is calculated in the framework of the single- and two-band model. By comparing the numerical and experimental results, it is shown that the single-gap isotropic model is insufficient to understand consistently optical behaviors. Also, it is concluded that the two-band model consistently describes the optical behaviors. In the two-gap model, we consider that the both components of optical conductivity are a weighted sum of the contribution from σ and π bonds and hybridization between them is negligible.
Using Green’s function method, the frequency dependence of optical conductivities of high-quality MgB2 film is calculated in the framework of the single- and two-band model. By comparing the numerical and experimental results, it is shown that the single-gap isotropic model is insufficient to understand consistently optical behaviors. Also, it is concluded that the two-band model consistently describes the optical behaviors. In the two-gap model, we consider that the both components of optical conductivity are a weighted sum of the contribution from σ and π bonds and hybridization between them is negligible.