摘要
The present work was aimed to the study of the antifungal activity of essential oils of two aromatic plants against three strains of Sclerotinia sclerotiorum responsible for white rot of bean. The two essential oils (EO) of the studied plants: Thymus vulgaris (HET) and Cymbopogon citratrus (HEC), used at different concentrations: C1 (0.75 ml/ml), C2 (1.5 ml/ml) and C3 (3 ml/ml) presented significant inhibitory activities on the three tested fungal strains namely Bia 1, Bia 2, and Njo 2. Two control treatments (T-: containing no antifungal substance and T+: synthetic fungicide) were also used. The antifungal activity here is related to the inhibition of mycelial growth especially with high concentrations of essential oils. Thus, against S. sclerotiorum, HET showed the highest activity comparable to that of T+ (100% inhibition) at all concentrations on the Bia 1 and Bia 2 strains and at concentration C3 on the Njo 2 strain compared to that of HEC, which certainly inhibited the mycelial growth of the different strains considerably (with a maximum of 78.15% on the Njo 2 strain) but not completely. According to their sensitivity, the Bia 2 strain showed a higher sensitivity to essential oils than the others while the Njo 2 strain was more aggressive. On the basis of MIC<sub>50</sub> and MIC<sub>90</sub> obtained on the Njo 2 strain, the HET turns out to be the most efficient with respective lower values of (1.73 and 23.34 ml/ml) against (4.76 and 26.03 ml/ml) for the HEC. These EO could thus be exploited as biodegradable antifungal substances, likely to control white rot of bean.
The present work was aimed to the study of the antifungal activity of essential oils of two aromatic plants against three strains of Sclerotinia sclerotiorum responsible for white rot of bean. The two essential oils (EO) of the studied plants: Thymus vulgaris (HET) and Cymbopogon citratrus (HEC), used at different concentrations: C1 (0.75 ml/ml), C2 (1.5 ml/ml) and C3 (3 ml/ml) presented significant inhibitory activities on the three tested fungal strains namely Bia 1, Bia 2, and Njo 2. Two control treatments (T-: containing no antifungal substance and T+: synthetic fungicide) were also used. The antifungal activity here is related to the inhibition of mycelial growth especially with high concentrations of essential oils. Thus, against S. sclerotiorum, HET showed the highest activity comparable to that of T+ (100% inhibition) at all concentrations on the Bia 1 and Bia 2 strains and at concentration C3 on the Njo 2 strain compared to that of HEC, which certainly inhibited the mycelial growth of the different strains considerably (with a maximum of 78.15% on the Njo 2 strain) but not completely. According to their sensitivity, the Bia 2 strain showed a higher sensitivity to essential oils than the others while the Njo 2 strain was more aggressive. On the basis of MIC<sub>50</sub> and MIC<sub>90</sub> obtained on the Njo 2 strain, the HET turns out to be the most efficient with respective lower values of (1.73 and 23.34 ml/ml) against (4.76 and 26.03 ml/ml) for the HEC. These EO could thus be exploited as biodegradable antifungal substances, likely to control white rot of bean.
作者
Serge Bertrand Mboussi
Alain Heu
Abdou Nourou Kone Nsangou
Jules Patrice Ngoh Dooh
Zachée Ambang
Serge Bertrand Mboussi;Alain Heu;Abdou Nourou Kone Nsangou;Jules Patrice Ngoh Dooh;Zachée Ambang(Laboratory of Biotechnology, University Institute of Technology, University of Douala, Douala, Cameroon;Department of Agriculture and Agropastoral, Higher Technical Teachers Training College, Ebolowa, Cameroon;Applyied Botanic Research Unit, Department of Plant Biology, University of Dschang, Dschang, Cameroon;Department of Biological Sciences, Faculty of Sciences, University of Maroua, Maroua, Cameroon;Biotechnology Laboratory, Phytopathology and Microbiology Unit, University of Yaoundé I, Yaoundé, Cameroon)