期刊文献+

The Benefits of Exogenous NO: Enhancing <i>Arabidopsis</i>to Resist <i>Botrytis cinerea</i> 被引量:2

The Benefits of Exogenous NO: Enhancing <i>Arabidopsis</i>to Resist <i>Botrytis cinerea</i>
下载PDF
导出
摘要 Botrytis cinerea is a necrotrophic fungal pathogen that impacts a wide range of hosts, including Arabidopsis. Pretreatment with nitric oxide (NO) donor sodium nitroprusside (SNP) on Arabidopsis leaves suppressed Botrytis cinerea infection development. Additionally, in this study the dosage levels of SNP applied to the leaves had no direct, toxic impact on the development of the pathogen. The relationship between NO and reactive oxidant species (ROS) was studied by using both spectrophotometrical methods and staining leaf material with fluorescent dyes, nitro blue tetrazolium (NBT), and with 3,3-diaminobenzidine (DAB). The results showed that exogenous NO restrained the generation of ROS, especially H2O2, as the pathogen interacted with the Arabidopsis plant. And this inhibition of reactive oxidant burst coincided with delay infection development in NO-supplied leaves. The influence of elevated level of NO on antioxidant enzymes was investigated in this study. The activities of catalase (CAT) and guaiacol peroxidase (POD) were increased to different degrees in both: 1) SNP treated only leaves, and 2) SNP pretreated leaves that were subsequently inoculateted with pathogens. However, the activity of superoxide dismutase (SOD) was unchanged in the leaves studied. The decrease in H2O2 content probably resulted from the increase in activities of POD and CAT. Our study suggests that NO might trigger some metabolic reactions, i.e. enhanced enzyme activity that restrains H2O2 which ultimately results in resistance to B. cinerea infection. Botrytis cinerea is a necrotrophic fungal pathogen that impacts a wide range of hosts, including Arabidopsis. Pretreatment with nitric oxide (NO) donor sodium nitroprusside (SNP) on Arabidopsis leaves suppressed Botrytis cinerea infection development. Additionally, in this study the dosage levels of SNP applied to the leaves had no direct, toxic impact on the development of the pathogen. The relationship between NO and reactive oxidant species (ROS) was studied by using both spectrophotometrical methods and staining leaf material with fluorescent dyes, nitro blue tetrazolium (NBT), and with 3,3-diaminobenzidine (DAB). The results showed that exogenous NO restrained the generation of ROS, especially H2O2, as the pathogen interacted with the Arabidopsis plant. And this inhibition of reactive oxidant burst coincided with delay infection development in NO-supplied leaves. The influence of elevated level of NO on antioxidant enzymes was investigated in this study. The activities of catalase (CAT) and guaiacol peroxidase (POD) were increased to different degrees in both: 1) SNP treated only leaves, and 2) SNP pretreated leaves that were subsequently inoculateted with pathogens. However, the activity of superoxide dismutase (SOD) was unchanged in the leaves studied. The decrease in H2O2 content probably resulted from the increase in activities of POD and CAT. Our study suggests that NO might trigger some metabolic reactions, i.e. enhanced enzyme activity that restrains H2O2 which ultimately results in resistance to B. cinerea infection.
机构地区 不详
出处 《American Journal of Plant Sciences》 2011年第3期511-519,共9页 美国植物学期刊(英文)
关键词 ARABIDOPSIS BOTRYTIS CINEREA Nitric Oxide Antioxidant Enzyme Disease Resistance Arabidopsis Botrytis cinerea Nitric Oxide Antioxidant Enzyme Disease Resistance
  • 相关文献

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部