摘要
This unique study evaluates the effects of Ralstonia solanacearum (Rs) induced biotic stress in two cultivars, Zingiber officinale (ginger) and Lycopersicon esculentum (tomato). They were grown in pots and hydroponic systems with controls;to induce biotic stress, about 8 × 104 colony forming units of Rs suspension was injected into the healthy test plants. Upon induction of Rs stress, highly significant (p 0.01) biochemical changes (%) were noticed in respect to controls: carbohydrate content was generally high in both plants;while they showed decreased starch and protein contents;phenolics showed a swing of decrease or increase between pot and hydroponic systems;and all plants in general showed higher (3-6 fold) proline content upon induction of biotic stress. Regarding oxidative stress isozymes (OSE), superoxide dismutase (EC 1.15.1.1) isozymes were normally 3, but treated hydroponics had 4 with comparable relative mobility values;peroxidase (EC 1.11.1.7) isozymes were generally 2, except for treated hydroponic tomato. Briefly, Rs induced biotic stress caused wilt symptoms in ginger, but did not affect tomato though its biochemical and OSE patterns especially in those grown as hydroponics were elicited to significantly higher levels.
This unique study evaluates the effects of Ralstonia solanacearum (Rs) induced biotic stress in two cultivars, Zingiber officinale (ginger) and Lycopersicon esculentum (tomato). They were grown in pots and hydroponic systems with controls;to induce biotic stress, about 8 × 104 colony forming units of Rs suspension was injected into the healthy test plants. Upon induction of Rs stress, highly significant (p 0.01) biochemical changes (%) were noticed in respect to controls: carbohydrate content was generally high in both plants;while they showed decreased starch and protein contents;phenolics showed a swing of decrease or increase between pot and hydroponic systems;and all plants in general showed higher (3-6 fold) proline content upon induction of biotic stress. Regarding oxidative stress isozymes (OSE), superoxide dismutase (EC 1.15.1.1) isozymes were normally 3, but treated hydroponics had 4 with comparable relative mobility values;peroxidase (EC 1.11.1.7) isozymes were generally 2, except for treated hydroponic tomato. Briefly, Rs induced biotic stress caused wilt symptoms in ginger, but did not affect tomato though its biochemical and OSE patterns especially in those grown as hydroponics were elicited to significantly higher levels.