期刊文献+

High Frequency Plant Regeneration from Leaf Derived Callus of <i>Dianthus caryophyllus</i>L.

High Frequency Plant Regeneration from Leaf Derived Callus of <i>Dianthus caryophyllus</i>L.
下载PDF
导出
摘要 An efficient procedure was developed for in vitro callus induction, proliferation and regeneration of carnation cultivar (Dianthus caryophyllus L.) using leaf, nodal and inter-nodal explants on Murashige and Skoog’s medium (MS) supplemented with exogenous plant growth regulators. For morphogenic callus induction and proliferation from various explants, MS medium supplemented with 3.0 mg/l 2,4-D was highly efficient with 100% callus induction frequency from inter-nodal explants. Leaf explants showed quicker response than nodal and inter-modal explants, for callus initiation within 6 days of inoculation. Best grown callus was obtained from leaf explant. The leaf-derived callus was maintained up to several weeks, which indicated that 8-week incubation period was the most suitable for obtaining well proliferated, morphogenic callus. Temperature variation also affected the growth of in vitro induced morphogenic callus from various explants. Results have shown that 27°C proved to be the best temperature for morphogenic callus induction and proliferation from leaf and inter-nodal explants. Among the auxin-cytokinin combination, MS medium containing 1.0 mg/l N(6)-benzylaminopurin (BAP) and 2.0 mg/l NAA showed the highest efficiency of callus initiation and proliferation from leaf, nodal and inter-nodal explants. Light conditions proved better for callogenesis and proliferation from leaf, nodal and inter-nodal explants. Regeneration response from well grown morphogenic callus was prominent on MS medium supplemented with 3.0 mg/l BAP alone and 1.0 mg/l NAA with 3.0 mg/l BAP. An efficient procedure was developed for in vitro callus induction, proliferation and regeneration of carnation cultivar (Dianthus caryophyllus L.) using leaf, nodal and inter-nodal explants on Murashige and Skoog’s medium (MS) supplemented with exogenous plant growth regulators. For morphogenic callus induction and proliferation from various explants, MS medium supplemented with 3.0 mg/l 2,4-D was highly efficient with 100% callus induction frequency from inter-nodal explants. Leaf explants showed quicker response than nodal and inter-modal explants, for callus initiation within 6 days of inoculation. Best grown callus was obtained from leaf explant. The leaf-derived callus was maintained up to several weeks, which indicated that 8-week incubation period was the most suitable for obtaining well proliferated, morphogenic callus. Temperature variation also affected the growth of in vitro induced morphogenic callus from various explants. Results have shown that 27°C proved to be the best temperature for morphogenic callus induction and proliferation from leaf and inter-nodal explants. Among the auxin-cytokinin combination, MS medium containing 1.0 mg/l N(6)-benzylaminopurin (BAP) and 2.0 mg/l NAA showed the highest efficiency of callus initiation and proliferation from leaf, nodal and inter-nodal explants. Light conditions proved better for callogenesis and proliferation from leaf, nodal and inter-nodal explants. Regeneration response from well grown morphogenic callus was prominent on MS medium supplemented with 3.0 mg/l BAP alone and 1.0 mg/l NAA with 3.0 mg/l BAP.
出处 《American Journal of Plant Sciences》 2014年第15期2454-2463,共10页 美国植物学期刊(英文)
关键词 DIANTHUS caryophyllus L. Regeneration Potential Plant Growth REGULATORS Morphogenic CALLUS Induction Dianthus caryophyllus L. Regeneration Potential Plant Growth Regulators Morphogenic Callus Induction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部