期刊文献+

Assessing Hyperspectral Vegetation Indices Responses of Six Pigweed Species

Assessing Hyperspectral Vegetation Indices Responses of Six Pigweed Species
下载PDF
导出
摘要 Pigweeds (</span><i><span style="font-family:Verdana;">Amaranthus</span></i><span style="font-family:""><span style="font-family:Verdana;"> species), negatively impact crop production systems throughout the world. They are distinguished from each other using manual methods that are tedious and time-consuming to complete. Hyperspectral light reflectance properties of plant leaves and canopies have shown promise for detecting and mapping weeds in crop production systems. Vegetation indices derived from hyperspectral reflectance data enhance differences between plants, leading to better detection of them from other targets. The objective was to evaluate the biomass and structural index, the biochemical index, the red edge index, the water and moisture index, the light-use efficiency index, and the lignin cellulose index for measuring differences among six pigweed species: </span><i><span style="font-family:Verdana;">Amaranthus</span></i> <i><span style="font-family:Verdana;">albus</span></i><span style="font-family:Verdana;"> (L), </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">hybridus</span></i><span style="font-family:Verdana;"> (L), </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">palmeri</span></i><span style="font-family:Verdana;"> (S. Wats.), </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">retroflexus</span></i><span style="font-family:Verdana;"> (L), </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">spinosus</span></i><span style="font-family:Verdana;"> (L), and </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">tuberculatus</span></i><span style="font-family:Verdana;"> [(Moq.) Sauer]. Two experiments were conducted under greenhouse conditions. Hyperspectral reflectance measurements were collected from the plant canopies on two dates for each experiment. Analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) test were used to determine if statistical differences (</span><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"> ≤ 0.05) existed among the pigweed species canopies and to identify which species were statistically different for a vegetation index, respectively. The ANOVA analysis detected statistical differences among the canopy vegetation index values. Tukey’s HSD showed that the biochemical index and the red edge index detected differences between two to three pigweeds species on all dates of data collection. However, the differences were date-specific. Furthermore, statistical differences were not observed for all six species for any vegetation index. On the data collection dates, </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">albus</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">tuberculatus</span></i><span style="font-family:Verdana;"> index values were statistically different from other pigweed species for one or more of the vegetation indices. Future research should focus on using the vegetation indices in combination with each other to measure differences between the pigweed species and between them and other weeds and crops. Pigweeds (</span><i><span style="font-family:Verdana;">Amaranthus</span></i><span style="font-family:""><span style="font-family:Verdana;"> species), negatively impact crop production systems throughout the world. They are distinguished from each other using manual methods that are tedious and time-consuming to complete. Hyperspectral light reflectance properties of plant leaves and canopies have shown promise for detecting and mapping weeds in crop production systems. Vegetation indices derived from hyperspectral reflectance data enhance differences between plants, leading to better detection of them from other targets. The objective was to evaluate the biomass and structural index, the biochemical index, the red edge index, the water and moisture index, the light-use efficiency index, and the lignin cellulose index for measuring differences among six pigweed species: </span><i><span style="font-family:Verdana;">Amaranthus</span></i> <i><span style="font-family:Verdana;">albus</span></i><span style="font-family:Verdana;"> (L), </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">hybridus</span></i><span style="font-family:Verdana;"> (L), </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">palmeri</span></i><span style="font-family:Verdana;"> (S. Wats.), </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">retroflexus</span></i><span style="font-family:Verdana;"> (L), </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">spinosus</span></i><span style="font-family:Verdana;"> (L), and </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">tuberculatus</span></i><span style="font-family:Verdana;"> [(Moq.) Sauer]. Two experiments were conducted under greenhouse conditions. Hyperspectral reflectance measurements were collected from the plant canopies on two dates for each experiment. Analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) test were used to determine if statistical differences (</span><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"> ≤ 0.05) existed among the pigweed species canopies and to identify which species were statistically different for a vegetation index, respectively. The ANOVA analysis detected statistical differences among the canopy vegetation index values. Tukey’s HSD showed that the biochemical index and the red edge index detected differences between two to three pigweeds species on all dates of data collection. However, the differences were date-specific. Furthermore, statistical differences were not observed for all six species for any vegetation index. On the data collection dates, </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">albus</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">A</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">tuberculatus</span></i><span style="font-family:Verdana;"> index values were statistically different from other pigweed species for one or more of the vegetation indices. Future research should focus on using the vegetation indices in combination with each other to measure differences between the pigweed species and between them and other weeds and crops.
作者 Reginald S. Fletcher Reginald S. Fletcher(United States Department of Agriculture, Agricultural Research Service, Stoneville, USA)
出处 《American Journal of Plant Sciences》 2020年第12期1934-1948,共15页 美国植物学期刊(英文)
关键词 HYPERSPECTRAL Palmer Amaranth Remote Sensing WEEDS Hyperspectral Palmer Amaranth Remote Sensing Weeds
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部