摘要
The objective of this study was to elaborate liposomes, through the lipid film hydration methodology, to nanoencapsulate phenolic compounds of Spirulina LEB-18 and Chlorella pyrenoidosa microalgae, and evaluate their physicochemical characteristics and storage stability for 21 days. The total phenolic compounds were evaluated using a calibration curve of gallic acid using methanol and ethanol as extraction solvents. The size and polydispersity index of nanovesicles were determined by light scattering and the percentage encapsulation efficiency was determined by a centrifugation process. The stability of the liposomes at storage time was measured by zeta potential for 21 days. The methanol extracts from Spirulina had a higher content of phenolic compounds (2.62 mg gallic acid·g-1 of microalgae) compared to the extracts of Chlorella. However, liposomes with ethanolic extracts of the two algae showed higher encapsulation efficiency. The value was higher (96.40%) for Chlorella. All samples obtained nanometric size, with the highest value obtained for the liposome containing ethanol extract of Chlorella (239 nm) differing significantly (p ≤ 0.05) from the others. The liposomes containing extracts of Spirulina were more stable during the 21 days of storage, whereas, those consisting of ethanol extract showed no significant difference (p ≤ 0.05) throughout this period.
The objective of this study was to elaborate liposomes, through the lipid film hydration methodology, to nanoencapsulate phenolic compounds of Spirulina LEB-18 and Chlorella pyrenoidosa microalgae, and evaluate their physicochemical characteristics and storage stability for 21 days. The total phenolic compounds were evaluated using a calibration curve of gallic acid using methanol and ethanol as extraction solvents. The size and polydispersity index of nanovesicles were determined by light scattering and the percentage encapsulation efficiency was determined by a centrifugation process. The stability of the liposomes at storage time was measured by zeta potential for 21 days. The methanol extracts from Spirulina had a higher content of phenolic compounds (2.62 mg gallic acid·g-1 of microalgae) compared to the extracts of Chlorella. However, liposomes with ethanolic extracts of the two algae showed higher encapsulation efficiency. The value was higher (96.40%) for Chlorella. All samples obtained nanometric size, with the highest value obtained for the liposome containing ethanol extract of Chlorella (239 nm) differing significantly (p ≤ 0.05) from the others. The liposomes containing extracts of Spirulina were more stable during the 21 days of storage, whereas, those consisting of ethanol extract showed no significant difference (p ≤ 0.05) throughout this period.
基金
The CAPES,Brazil for the financial support that made this study possible.