摘要
The iron compounds in the oxidation state (VI) have the specific advantage of being powerful oxidants and bactericides. This feature explains their particular interest in the treatment of water. The aim of this work is to prepare Na2FeO4 stable at ambient in order to optimize the key parameters influencing the performance of the oxidation of iron (II) to iron (VI), as well as to monitor its degradation over time. The synthesis of this phase has been carried out by using the dry reaction Na2O2 with Fe2O3 with a temperature of 700°C for a reaction time of 13 hours with a Na/Fe ratio of 4 to make it possible to simplify the synthesis procedure, to minimize the cost and enhance the production of iron (VI) to meet the growing demand of ferrate (VI) for its interest in water treatment. The obtained phase was characterized by UV spectrophotometer by measuring the optical density at a wavelength of 507 nm.
The iron compounds in the oxidation state (VI) have the specific advantage of being powerful oxidants and bactericides. This feature explains their particular interest in the treatment of water. The aim of this work is to prepare Na2FeO4 stable at ambient in order to optimize the key parameters influencing the performance of the oxidation of iron (II) to iron (VI), as well as to monitor its degradation over time. The synthesis of this phase has been carried out by using the dry reaction Na2O2 with Fe2O3 with a temperature of 700°C for a reaction time of 13 hours with a Na/Fe ratio of 4 to make it possible to simplify the synthesis procedure, to minimize the cost and enhance the production of iron (VI) to meet the growing demand of ferrate (VI) for its interest in water treatment. The obtained phase was characterized by UV spectrophotometer by measuring the optical density at a wavelength of 507 nm.