摘要
In this article, a new type of coagulant material has been investigated and the performance of the coagulation process using this type of coagulant was evaluated. This new type is a combination of zinc oxide nanoparticles and polyferric sulfate (ZnOPFS). The structure of zinc oxide nanoparticles was determined by spectroscopic, X-ray and electron microscopy methods, and based on this, it was determined that ZnOPFS is a complex and mixed compound that is mainly composed of zinc oxide nanoparticles and ferric sulfate. The effects of Zn/Fe (Zn/Fe) molar ratio and aging (time) on acidity and zeta potential were also evaluated using a specific method. The obtained results showed that in the simultaneous deposition process, zinc ions can prevent the formation of polyferric acid coagulation and subsequently improve the stability of ZnOPFS.
In this article, a new type of coagulant material has been investigated and the performance of the coagulation process using this type of coagulant was evaluated. This new type is a combination of zinc oxide nanoparticles and polyferric sulfate (ZnOPFS). The structure of zinc oxide nanoparticles was determined by spectroscopic, X-ray and electron microscopy methods, and based on this, it was determined that ZnOPFS is a complex and mixed compound that is mainly composed of zinc oxide nanoparticles and ferric sulfate. The effects of Zn/Fe (Zn/Fe) molar ratio and aging (time) on acidity and zeta potential were also evaluated using a specific method. The obtained results showed that in the simultaneous deposition process, zinc ions can prevent the formation of polyferric acid coagulation and subsequently improve the stability of ZnOPFS.
作者
Akbar Darvishi
Aryan Abbasi
Farshad Farahbod
Akbar Darvishi;Aryan Abbasi;Farshad Farahbod(Department of Chemical and Petroleum Engineering, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran;Department of Chemistry, Damghan Branch, Islamic Azad University, Damghan, Iran;Department of Chemical Engineering, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran)