期刊文献+

Structural and Ion Transport Studies in (100-x) PVdF + xNH<sub>4</sub>SCN Gel Electrolyte

Structural and Ion Transport Studies in (100-x) PVdF + xNH<sub>4</sub>SCN Gel Electrolyte
下载PDF
导出
摘要 In order to obtain highly conductive polymer gel electrolytes for electrochemical devices, Poly (vinylidene fluoride) (PVdF) based gel electrolytes namely (100–x)PVdF + xNH4SCN electrolyte system has been synthesized by solution cast technique and characterized by XRD, DSC, IR, SEM and electrical measurements. IR study of gel electrolytes shows interaction of PVdF matrix and dopant salt with prominence of α-phase. This result is also well supported by XRD and DSC studies. The electrolytes are electrochemically stable within ± 1.5 V. The optimum bulk electrical conductivity for 90PVdF + 10NH4SCN electrolyte has been found to be ~ 2.5 × 10–2 S●cm–1. Dielectric relaxation behavior shows low frequency dispersion and αc-related relaxation peak is observed in loss spectra. Polarization behavior of gel electrolyte shows ionic nature of charge transport (Tion. > 0.90). The temperature dependent conductivity shows VTF behavior. In order to obtain highly conductive polymer gel electrolytes for electrochemical devices, Poly (vinylidene fluoride) (PVdF) based gel electrolytes namely (100–x)PVdF + xNH4SCN electrolyte system has been synthesized by solution cast technique and characterized by XRD, DSC, IR, SEM and electrical measurements. IR study of gel electrolytes shows interaction of PVdF matrix and dopant salt with prominence of α-phase. This result is also well supported by XRD and DSC studies. The electrolytes are electrochemically stable within ± 1.5 V. The optimum bulk electrical conductivity for 90PVdF + 10NH4SCN electrolyte has been found to be ~ 2.5 × 10–2 S●cm–1. Dielectric relaxation behavior shows low frequency dispersion and αc-related relaxation peak is observed in loss spectra. Polarization behavior of gel electrolyte shows ionic nature of charge transport (Tion. > 0.90). The temperature dependent conductivity shows VTF behavior.
机构地区 不详
出处 《Materials Sciences and Applications》 2011年第7期721-728,共8页 材料科学与应用期刊(英文)
关键词 Poly (Vinylidene Fluoride) Gel Electrolyte Ion Transport Dielectric Relaxation STRUCTURAL STUDIES Poly (Vinylidene Fluoride) Gel Electrolyte Ion Transport Dielectric Relaxation Structural Studies
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部