摘要
In order to obtain highly conductive polymer gel electrolytes for electrochemical devices, Poly (vinylidene fluoride) (PVdF) based gel electrolytes namely (100–x)PVdF + xNH4SCN electrolyte system has been synthesized by solution cast technique and characterized by XRD, DSC, IR, SEM and electrical measurements. IR study of gel electrolytes shows interaction of PVdF matrix and dopant salt with prominence of α-phase. This result is also well supported by XRD and DSC studies. The electrolytes are electrochemically stable within ± 1.5 V. The optimum bulk electrical conductivity for 90PVdF + 10NH4SCN electrolyte has been found to be ~ 2.5 × 10–2 S●cm–1. Dielectric relaxation behavior shows low frequency dispersion and αc-related relaxation peak is observed in loss spectra. Polarization behavior of gel electrolyte shows ionic nature of charge transport (Tion. > 0.90). The temperature dependent conductivity shows VTF behavior.
In order to obtain highly conductive polymer gel electrolytes for electrochemical devices, Poly (vinylidene fluoride) (PVdF) based gel electrolytes namely (100–x)PVdF + xNH4SCN electrolyte system has been synthesized by solution cast technique and characterized by XRD, DSC, IR, SEM and electrical measurements. IR study of gel electrolytes shows interaction of PVdF matrix and dopant salt with prominence of α-phase. This result is also well supported by XRD and DSC studies. The electrolytes are electrochemically stable within ± 1.5 V. The optimum bulk electrical conductivity for 90PVdF + 10NH4SCN electrolyte has been found to be ~ 2.5 × 10–2 S●cm–1. Dielectric relaxation behavior shows low frequency dispersion and αc-related relaxation peak is observed in loss spectra. Polarization behavior of gel electrolyte shows ionic nature of charge transport (Tion. > 0.90). The temperature dependent conductivity shows VTF behavior.