期刊文献+

Influence of the Coolant Flow Containing Silver Nanoparticles (Ag) from an Aqueous Solution Based on Ethylene Glycol (EG50%) on the Thermal-Hydraulic Performance of an Automotive Radiator 被引量:1

Influence of the Coolant Flow Containing Silver Nanoparticles (Ag) from an Aqueous Solution Based on Ethylene Glycol (EG50%) on the Thermal-Hydraulic Performance of an Automotive Radiator
下载PDF
导出
摘要 A theoretical analysis of the influence of the flow of a coolant containing silver nanoparticle (Ag) in an automotive radiator is presented. The coolant fluid is composed of water or an aqueous solution of Ethylene-Glycol (EG50%) and silver nanoparticles. Ethylene glycol (EG) has been used in automobile radiators for many years due to its compatibility with metals and its anti-cooling properties. Silver nanoparticles are being incorporated into the development of high-precision surgical equipment. It is shown that the rate of heat transfer increases significantly using silver nanoparticles and ethylene glycol and water. There is a maximum for heat exchange between fluids in all analyzed coolant flows—the maximum moves to higher airflow rates when the coolant flow rate is increased. However, the energy dissipation in the stream also increases, but the relationship between the energy dissipated in the flow and the energy transferred in the form of heat is low, which justifies the use of silver nanoparticles and ethylene glycol, or silver nanoparticles and water as a coolant in the automotive vehicle radiator. A theoretical analysis of the influence of the flow of a coolant containing silver nanoparticle (Ag) in an automotive radiator is presented. The coolant fluid is composed of water or an aqueous solution of Ethylene-Glycol (EG50%) and silver nanoparticles. Ethylene glycol (EG) has been used in automobile radiators for many years due to its compatibility with metals and its anti-cooling properties. Silver nanoparticles are being incorporated into the development of high-precision surgical equipment. It is shown that the rate of heat transfer increases significantly using silver nanoparticles and ethylene glycol and water. There is a maximum for heat exchange between fluids in all analyzed coolant flows—the maximum moves to higher airflow rates when the coolant flow rate is increased. However, the energy dissipation in the stream also increases, but the relationship between the energy dissipated in the flow and the energy transferred in the form of heat is low, which justifies the use of silver nanoparticles and ethylene glycol, or silver nanoparticles and water as a coolant in the automotive vehicle radiator.
出处 《World Journal of Nano Science and Engineering》 2020年第1期14-26,共13页 纳米科学与工程(英文)
关键词 AUTOMOTIVE RADIATOR Silver Nanoparticle Water-Ethylene GLYCOL Compact Heat EXCHANGER Automotive Radiator Silver Nanoparticle Water-Ethylene Glycol Compact Heat Exchanger
  • 相关文献

参考文献3

共引文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部