期刊文献+

Produced Water Geochemistry from an Upstream Oil Operation

Produced Water Geochemistry from an Upstream Oil Operation
下载PDF
导出
摘要 Oil and gas industries generate a significant amount of water during the production. The composition of this water varies with the geologic age, depth, and geochemistry of the region along with the chemicals added during the process. Geochemistry of formation water is used for aquifer identification, pollution problems, water compatibility studies, corrosion monitoring, water-quality control, water flooding, exploration, and to diagnose wellbore integrity issues. The current study investigates the spatial and temporal variation of produced water geochemistry from one of the largest conventional oil field, Ghawar field, Saudi Arabia. Produced water from different wellheads were collected and analyzed for different geochemical characteristics. Sixteen wells from ABQQ, nineteen wells from ANDR and twenty wells from SDGM area were selected for the current study. Sampling and analysis were performed as per the standard procedures. Results indicated that the pH of the sample varied from 6.0 to 7.4, and Electrical conductivity from 94200 to 102690 μS/cm. The spatial variation of major cations and anions were also recorded and represented by graphical plots. Metal analysis indicated the highest concentration for boron, which is 20.5 mg/L at ABQQ area, whereas all other metals are very low in concentration. Temporal variation of a single well at SDGM area indicated drastic change in the ionic concentration, whereas the geochemistry remains same as indicated by Tickler plot. The water type of the respective area was studied by tickler plots, which indicated same source of formation water in different wells at ABQQ, ANDR and SDGM areas. The ionic concentration is also used to predict corrosion and scaling issues. By Langelier Saturation Index (LSI) and Ryznar Stability Index (RSI), the sample from all the wells showed higher scaling potential. The study concludes that the water type in different areas under Ghawar field remains same regardless of drastic changes in the ionic concentration, which can be used to diagnose wellbore integrity issues. Oil and gas industries generate a significant amount of water during the production. The composition of this water varies with the geologic age, depth, and geochemistry of the region along with the chemicals added during the process. Geochemistry of formation water is used for aquifer identification, pollution problems, water compatibility studies, corrosion monitoring, water-quality control, water flooding, exploration, and to diagnose wellbore integrity issues. The current study investigates the spatial and temporal variation of produced water geochemistry from one of the largest conventional oil field, Ghawar field, Saudi Arabia. Produced water from different wellheads were collected and analyzed for different geochemical characteristics. Sixteen wells from ABQQ, nineteen wells from ANDR and twenty wells from SDGM area were selected for the current study. Sampling and analysis were performed as per the standard procedures. Results indicated that the pH of the sample varied from 6.0 to 7.4, and Electrical conductivity from 94200 to 102690 μS/cm. The spatial variation of major cations and anions were also recorded and represented by graphical plots. Metal analysis indicated the highest concentration for boron, which is 20.5 mg/L at ABQQ area, whereas all other metals are very low in concentration. Temporal variation of a single well at SDGM area indicated drastic change in the ionic concentration, whereas the geochemistry remains same as indicated by Tickler plot. The water type of the respective area was studied by tickler plots, which indicated same source of formation water in different wells at ABQQ, ANDR and SDGM areas. The ionic concentration is also used to predict corrosion and scaling issues. By Langelier Saturation Index (LSI) and Ryznar Stability Index (RSI), the sample from all the wells showed higher scaling potential. The study concludes that the water type in different areas under Ghawar field remains same regardless of drastic changes in the ionic concentration, which can be used to diagnose wellbore integrity issues.
作者 Nasir Ullattumpoyil Nasir Ullattumpoyil(Southern Area Technical Support Department, Saudi Aramco, Dhahran, KSA)
出处 《Journal of Geoscience and Environment Protection》 2023年第6期155-168,共14页 地球科学和环境保护期刊(英文)
关键词 Formation Water Petroleum Reservoirs GROUNDWATER Ghawar Field Tickler Plot Formation Water Petroleum Reservoirs Groundwater Ghawar Field Tickler Plot
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部