期刊文献+

Three-Dimensional Reservoir Modeling Using Stochastic Simulation, a Case Study of an East African Oil Field

Three-Dimensional Reservoir Modeling Using Stochastic Simulation, a Case Study of an East African Oil Field
下载PDF
导出
摘要 This paper presents a three-dimensional geological reservoir model created using stochastic simulation. The oil field presented is an East African oil field formed by a structural trap. Data analysis and transformations were conducted on the properties before simulation. The variogram was used to measure the spatial correlation of cell-based facies modeling, and porosity and permeability modeling. Two main lithologies were modelled using sequential indicator simulation, sand and shale. Sand had a percentage of 26.8% and shale of 73.2%. There was a clear property distribution trend of sand and shale from the southwest to the northeastern part of a reservoir. The distribution trend of the facies resembled the proposed depositional model of the reservoir. Simulations show that average porosity and permeability of the reservoir are about 20% and 1004 mD, respectively. Average water saturation was 64%. STOIIP volume of 689.42 MMbbls was calculated. The results of simulation showed that the south eastern part of the reservoir holds higher volumes of oil. In conclusion, the model gave a better geological understanding of the geology of the area and can be used for decision making about the future development of the reservoir, prediction performance and uncertainty analysis. This paper presents a three-dimensional geological reservoir model created using stochastic simulation. The oil field presented is an East African oil field formed by a structural trap. Data analysis and transformations were conducted on the properties before simulation. The variogram was used to measure the spatial correlation of cell-based facies modeling, and porosity and permeability modeling. Two main lithologies were modelled using sequential indicator simulation, sand and shale. Sand had a percentage of 26.8% and shale of 73.2%. There was a clear property distribution trend of sand and shale from the southwest to the northeastern part of a reservoir. The distribution trend of the facies resembled the proposed depositional model of the reservoir. Simulations show that average porosity and permeability of the reservoir are about 20% and 1004 mD, respectively. Average water saturation was 64%. STOIIP volume of 689.42 MMbbls was calculated. The results of simulation showed that the south eastern part of the reservoir holds higher volumes of oil. In conclusion, the model gave a better geological understanding of the geology of the area and can be used for decision making about the future development of the reservoir, prediction performance and uncertainty analysis.
出处 《International Journal of Geosciences》 2018年第4期214-235,共22页 地球科学国际期刊(英文)
关键词 Geostatistical Modeling STOCHASTIC SIMULATION VARIOGRAMS SEQUENTIAL INDICATOR SIMULATION SEQUENTIAL GAUSSIAN SIMULATION Geostatistical Modeling Stochastic Simulation Variograms Sequential Indicator Simulation Sequential Gaussian Simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部