摘要
The objective of this research was to study the treatment of acetonitrile by catalytic supercritical water oxi-dation in a compact-sized tubular reactor, with an internal volume of 4.71 mL. Manganese dioxide was used as the catalyst and H2O2 was used as the oxidant. The oxidation of acetonitrile in supercritical water was studied at 400-500 oC, 25-35 MPa, the flow rate of 2-4 mL/min, the initial concentration of acetonitrile 0.077-0.121 M and the %excess O2 of 50-200%. As a result, the products were mainly N2, CO2 and CO and acetonitrile can be decomposed > 93 % within a very short contact time (1.45-6.19 s). The oxidation process was carried out with respect to the conversion of acetonitrile by 25 factorial design. Regression models were obtained for correlating the conversion of acetonitrile with temperature and flow rate. The complete oxida-tion can be achieved at a condition as moderate as 400 oC, 25 MPa with the flow rate of 2 mL/min.
The objective of this research was to study the treatment of acetonitrile by catalytic supercritical water oxi-dation in a compact-sized tubular reactor, with an internal volume of 4.71 mL. Manganese dioxide was used as the catalyst and H2O2 was used as the oxidant. The oxidation of acetonitrile in supercritical water was studied at 400-500 oC, 25-35 MPa, the flow rate of 2-4 mL/min, the initial concentration of acetonitrile 0.077-0.121 M and the %excess O2 of 50-200%. As a result, the products were mainly N2, CO2 and CO and acetonitrile can be decomposed > 93 % within a very short contact time (1.45-6.19 s). The oxidation process was carried out with respect to the conversion of acetonitrile by 25 factorial design. Regression models were obtained for correlating the conversion of acetonitrile with temperature and flow rate. The complete oxida-tion can be achieved at a condition as moderate as 400 oC, 25 MPa with the flow rate of 2 mL/min.