期刊文献+

Groundwater Origin and Its Hydrogeochemistry through GIS Maps in Linares Region, Mexico

Groundwater Origin and Its Hydrogeochemistry through GIS Maps in Linares Region, Mexico
下载PDF
导出
摘要 The North-East region of Mexican Republic has a semi-arid weather condition;this area covers partially Tamaulipas, Nuevo León and Coahuila states. Pablillo River Basin (PRB) is located close to Nuevo León south border and its catchment area involves Linares City (LC), Hualahuises City (HC) and Cerro-Prieto dam (CP). This reservoir captures drinking water to Monterrey Metropolitan Zone (MMZ) the major urban center on the north-east Mexican region. More than 50% of the potable water for LC comes from groundwater stockpiles. A combination of GIS maps and major ion chemistry analysis has been assessed, to know the origin, geochemical evolution, and hydraulic interconnection of groundwater. During 2008-2009, 46 groundwater samples were taken and analyzed around LC and HC. GIS technology was use to analyze the spatial distribution of the constituents of groundwater through thematic maps. The major ion analysis and its results suggest the presences of two aquifers;shallow porous aquifer on the top and fractured aquifer on the bottom. General water mineralization was discovered, including dissolution of halite, dolomites and carbonates through the aquifers. Water quality varies widely through the aquifers, and the general pathways go from southwest to northeast direction. The overexploitation of groundwater increases the water mixing of groundwater between shallow and deeper aquifers. Natural origin of groundwater and groundwater pollution by anthropogenic activities should be considered in the groundwater quality analysis for drinking water purpose. The North-East region of Mexican Republic has a semi-arid weather condition;this area covers partially Tamaulipas, Nuevo León and Coahuila states. Pablillo River Basin (PRB) is located close to Nuevo León south border and its catchment area involves Linares City (LC), Hualahuises City (HC) and Cerro-Prieto dam (CP). This reservoir captures drinking water to Monterrey Metropolitan Zone (MMZ) the major urban center on the north-east Mexican region. More than 50% of the potable water for LC comes from groundwater stockpiles. A combination of GIS maps and major ion chemistry analysis has been assessed, to know the origin, geochemical evolution, and hydraulic interconnection of groundwater. During 2008-2009, 46 groundwater samples were taken and analyzed around LC and HC. GIS technology was use to analyze the spatial distribution of the constituents of groundwater through thematic maps. The major ion analysis and its results suggest the presences of two aquifers;shallow porous aquifer on the top and fractured aquifer on the bottom. General water mineralization was discovered, including dissolution of halite, dolomites and carbonates through the aquifers. Water quality varies widely through the aquifers, and the general pathways go from southwest to northeast direction. The overexploitation of groundwater increases the water mixing of groundwater between shallow and deeper aquifers. Natural origin of groundwater and groundwater pollution by anthropogenic activities should be considered in the groundwater quality analysis for drinking water purpose.
出处 《Journal of Water Resource and Protection》 2013年第8期1-12,共12页 水资源与保护(英文)
关键词 GROUNDWATER HYDROGEOCHEMISTRY GIS Mexico Groundwater Hydrogeochemistry GIS Mexico
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部