期刊文献+

Reservoir Characterization of Carbonate in Low Resistivity Pays Zones in the Buwaib Formation, Persian Gulf 被引量:3

Reservoir Characterization of Carbonate in Low Resistivity Pays Zones in the Buwaib Formation, Persian Gulf
下载PDF
导出
摘要 Carbonate reservoir characterization and estimation of fluid saturation seem more challenging in the low resistivity pay zone (LRPZ). The Lower Cretaceous Buwaib Formation is important reservoir in the Persian Gulf. The formation in the Salman Field is divided into three reservoir zones and four barriers and tight zones. These reservoir zones show low resistivity characteristics, high fluid saturation, but good oil production. In some intervals resistivity responses reach less than 1 ohm•m. Petrophysical properties measured from laboratory and logging tools have been combined with thin section X-ray diffraction (XRD) and PNN (Pulse Neutron Neutron). Geological studies define presence of 8 facies from wackeston to packstone. In general, reservoir potential of the Buwaib Formation is under influenced by the development of lithocodium mound facies that along with moderate to high porosity intervals. Micritization and pyritization of digenetic process along with clay-coated grains, carbonate with interstitial dispersed clay have conspicuous impact on LRPZ. Based on XRD analysis, Montmorillonite and Kaolinite of main clays types have high CEC and greater impact on lowering resistivity. To describe pore systems of rocks, the Lønøy method applied to address pore throat sizes which contain mudstone micro porosity related to lithocodium mound facies and uniform interparticle at class 3 Lucia as pore size varies from 0.2 to 10 micron. Some constraints were defined to estimate reliable water saturation that checked by sigma logs. Water saturation is 42%, 34% and 40% respectively in BL1, BL2 and BL3 zones. Carbonate reservoir characterization and estimation of fluid saturation seem more challenging in the low resistivity pay zone (LRPZ). The Lower Cretaceous Buwaib Formation is important reservoir in the Persian Gulf. The formation in the Salman Field is divided into three reservoir zones and four barriers and tight zones. These reservoir zones show low resistivity characteristics, high fluid saturation, but good oil production. In some intervals resistivity responses reach less than 1 ohm•m. Petrophysical properties measured from laboratory and logging tools have been combined with thin section X-ray diffraction (XRD) and PNN (Pulse Neutron Neutron). Geological studies define presence of 8 facies from wackeston to packstone. In general, reservoir potential of the Buwaib Formation is under influenced by the development of lithocodium mound facies that along with moderate to high porosity intervals. Micritization and pyritization of digenetic process along with clay-coated grains, carbonate with interstitial dispersed clay have conspicuous impact on LRPZ. Based on XRD analysis, Montmorillonite and Kaolinite of main clays types have high CEC and greater impact on lowering resistivity. To describe pore systems of rocks, the Lønøy method applied to address pore throat sizes which contain mudstone micro porosity related to lithocodium mound facies and uniform interparticle at class 3 Lucia as pore size varies from 0.2 to 10 micron. Some constraints were defined to estimate reliable water saturation that checked by sigma logs. Water saturation is 42%, 34% and 40% respectively in BL1, BL2 and BL3 zones.
机构地区 Department of Geology
出处 《Open Journal of Geology》 2017年第9期1441-1451,共11页 地质学期刊(英文)
关键词 Low-Resistivity PAY Buwaib FORMATION Water Saturation Clay Types PORE Systems Low-Resistivity Pay Buwaib Formation Water Saturation Clay Types Pore Systems
  • 相关文献

同被引文献42

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部