摘要
The granites and pegmatites located in the southern part of the Issia region, near the columbo-tantaliferous placers, are characterized by the presence of rare metals such as beryl, lithium and Nb-Ta oxides. They mainly consist of micas, quartz, plagioclase and potassium feldspar. The work carried out on the micas of these granites and pegmatites (EPMA analyses) has provided new geochemical data contributing to the understanding of the magmatic evolution of the Issia granite complex. Mineralogically, the most evolved G3 granites are characterized by their abundance of muscovite compared to biotite and the presence of pegmatite veins. Geochemically, the muscovites of the G1 and G2 granites are more ferriferous than those of the G3 granites, however, the latter display higher Na contents than the G2 and G3. The muscovites of the granites show an evolution from the pure muscovite series to the zinnwaldite series (micas of the pegmatites) which are lithium-bearing micas. The mineralogical and chemical data of the micas show that they are S-type peraluminous granites and demonstrate the formation of granites and pegmatites through fractional crystallization of the same parental magma.
The granites and pegmatites located in the southern part of the Issia region, near the columbo-tantaliferous placers, are characterized by the presence of rare metals such as beryl, lithium and Nb-Ta oxides. They mainly consist of micas, quartz, plagioclase and potassium feldspar. The work carried out on the micas of these granites and pegmatites (EPMA analyses) has provided new geochemical data contributing to the understanding of the magmatic evolution of the Issia granite complex. Mineralogically, the most evolved G3 granites are characterized by their abundance of muscovite compared to biotite and the presence of pegmatite veins. Geochemically, the muscovites of the G1 and G2 granites are more ferriferous than those of the G3 granites, however, the latter display higher Na contents than the G2 and G3. The muscovites of the granites show an evolution from the pure muscovite series to the zinnwaldite series (micas of the pegmatites) which are lithium-bearing micas. The mineralogical and chemical data of the micas show that they are S-type peraluminous granites and demonstrate the formation of granites and pegmatites through fractional crystallization of the same parental magma.