期刊文献+

Influence of Potassium Nutrition and Exogenous Organic Acids on Iron Uptake by Monocot and Dicot Plants

Influence of Potassium Nutrition and Exogenous Organic Acids on Iron Uptake by Monocot and Dicot Plants
下载PDF
导出
摘要 Iron (Fe) is a vital element for the survival and proliferation of all plants;therefore, Fe-biofortification by the application of chemical and organic fertilizers is being as an effective approach to fight hidden hunger retards the growth and development of crop plants. Two experiments were carried out to investigate the effect of potassium and exogenous organic acids on iron uptake by two different plants<span>:</span><span> one is monocotyledon</span><span>,</span><span><span> maize (<i></i></span><i><i><span>Zea mays</span></i><span></span></i> L.) and the second is dicotolydon pea (<i></i></span><i><i><span>Pisum sativum</span></i></i><span> L.) grown under controlled conditions. The seedlings were grown in sand culture in a greenhouse experiment and irrigated with one-tenth strength modified nutrient solution of Hoagland and Arnon as a base solution (pH 7.5), containing different iron treatments (0, 1, and 5 ppm as FeSO</span><sub>4</sub>·<span>7H</span><sub><span>2</span></sub><span>O) combined with potassium nutrition (0, 5, 10, and 50 ppm as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span>). After 30 days, the best interaction treatment was selected for further experiment including 5.0 ppm Fe as FeSO</span><sub>4</sub><sup>.</sup><span>7H</span><sub><span>2</span></sub><span>O and 50 ppm K as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span> in combination with 1</span><span> </span><span>×</span><span> </span><span><span>10<sup>-</sup></span><sup><span>5</span></sup><span> mole/liter of one </span></span><span>of </span><span>the following organic acids: Citric acid, Oxalic acid, Formic acid, Acetic acid, Propionic acid, Tartaric acid, Succinic acid, Fumaric acid, Malic acid, Glutamic acid, besides the free organic acid nutrient solution as a control. Results revealed that the interaction between 5.0 ppm Fe and 50 ppm K was the best interaction treatment for increasing biomass production and iron uptake of maize and pea seedlings under applied condition. Furthermore, exogenous application of organic acids improves uptake and translocation of nutrient such as iron, potassium and phosphorus by the maize and pea plants. In conclusion, potassium nutrition and exogenous organic acids have the potential to stimulate Fe-uptake of monocot and dicot plants and mediate iron-biofortified crops.</span> Iron (Fe) is a vital element for the survival and proliferation of all plants;therefore, Fe-biofortification by the application of chemical and organic fertilizers is being as an effective approach to fight hidden hunger retards the growth and development of crop plants. Two experiments were carried out to investigate the effect of potassium and exogenous organic acids on iron uptake by two different plants<span>:</span><span> one is monocotyledon</span><span>,</span><span><span> maize (<i></i></span><i><i><span>Zea mays</span></i><span></span></i> L.) and the second is dicotolydon pea (<i></i></span><i><i><span>Pisum sativum</span></i></i><span> L.) grown under controlled conditions. The seedlings were grown in sand culture in a greenhouse experiment and irrigated with one-tenth strength modified nutrient solution of Hoagland and Arnon as a base solution (pH 7.5), containing different iron treatments (0, 1, and 5 ppm as FeSO</span><sub>4</sub>·<span>7H</span><sub><span>2</span></sub><span>O) combined with potassium nutrition (0, 5, 10, and 50 ppm as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span>). After 30 days, the best interaction treatment was selected for further experiment including 5.0 ppm Fe as FeSO</span><sub>4</sub><sup>.</sup><span>7H</span><sub><span>2</span></sub><span>O and 50 ppm K as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span> in combination with 1</span><span> </span><span>×</span><span> </span><span><span>10<sup>-</sup></span><sup><span>5</span></sup><span> mole/liter of one </span></span><span>of </span><span>the following organic acids: Citric acid, Oxalic acid, Formic acid, Acetic acid, Propionic acid, Tartaric acid, Succinic acid, Fumaric acid, Malic acid, Glutamic acid, besides the free organic acid nutrient solution as a control. Results revealed that the interaction between 5.0 ppm Fe and 50 ppm K was the best interaction treatment for increasing biomass production and iron uptake of maize and pea seedlings under applied condition. Furthermore, exogenous application of organic acids improves uptake and translocation of nutrient such as iron, potassium and phosphorus by the maize and pea plants. In conclusion, potassium nutrition and exogenous organic acids have the potential to stimulate Fe-uptake of monocot and dicot plants and mediate iron-biofortified crops.</span>
作者 Eman F. A. Awad-Allah Ibrahim H. Elsokkary Eman F. A. Awad-Allah;Ibrahim H. Elsokkary(Soil and Water Sciences Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt)
出处 《Open Journal of Soil Science》 2020年第10期486-500,共15页 土壤科学期刊(英文)
关键词 POTASSIUM Organic Acids Iron Uptake BIOFORTIFICATION SUSTAINABILITY Potassium Organic Acids Iron Uptake Biofortification Sustainability
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部