期刊文献+

Improving the Accuracy of Under-Fog Driving Assistance System

Improving the Accuracy of Under-Fog Driving Assistance System
下载PDF
导出
摘要 Driving in fog condition is dangerous. Fog causes poor visibility on roads leading to road traffic accident (RTA). RTA in Albaha is common because of its rough terrain, in addition to the climate that is mainly rainy and foggy. The rain season in Albaha region begins in October to February characterized by rainfall and fog. Many studies have reported the adverse effects of the rain on RTA which results in an increased rate of crashes. On the other hand, Albaha region is not supported by a proper intelligent transportation system and infrastructure. Thus, a Driver Assistance System (DAS) that requires minimum infrastructure is needed. A DAS under fog called No_Collision has been developed by a researcher in Albaha University. This paper discusses an implementation of adaptive Kalman Filter by utilizing Fuzzy logic system with the aim to improve the accuracy of position and velocity prediction of the No_Collision system. The experiment results show a promising adaptive system that reduces the error percentage of the prediction up to 56.58%. Driving in fog condition is dangerous. Fog causes poor visibility on roads leading to road traffic accident (RTA). RTA in Albaha is common because of its rough terrain, in addition to the climate that is mainly rainy and foggy. The rain season in Albaha region begins in October to February characterized by rainfall and fog. Many studies have reported the adverse effects of the rain on RTA which results in an increased rate of crashes. On the other hand, Albaha region is not supported by a proper intelligent transportation system and infrastructure. Thus, a Driver Assistance System (DAS) that requires minimum infrastructure is needed. A DAS under fog called No_Collision has been developed by a researcher in Albaha University. This paper discusses an implementation of adaptive Kalman Filter by utilizing Fuzzy logic system with the aim to improve the accuracy of position and velocity prediction of the No_Collision system. The experiment results show a promising adaptive system that reduces the error percentage of the prediction up to 56.58%.
作者 Bedine Kerim Bedine Kerim(Department of Information Technology, Albaha University, Al Bahah, KSA)
出处 《Journal of Signal and Information Processing》 2020年第2期23-33,共11页 信号与信息处理(英文)
关键词 Driver Assistance System GPS Intelligent System Kalman Filter Fuzzy Logic Driver Assistance System GPS Intelligent System Kalman Filter Fuzzy Logic
  • 相关文献

参考文献2

二级参考文献3

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部