A polycrystalline sample Ndo.5Sro.3Cao.2MnO3 is prepared by the conventional solid state reaction method. The structure and magnetic properties are investigated with x-ray diffraction (XRD) patterns, a superconducti...A polycrystalline sample Ndo.5Sro.3Cao.2MnO3 is prepared by the conventional solid state reaction method. The structure and magnetic properties are investigated with x-ray diffraction (XRD) patterns, a superconducting quantum in- terference device (SQUID), and electron spin resonance (ESR). The sample is in single phase with the space group Pbnm symmetry. With the decrease of temperature, Ndo.sSro.3Cao.2MnO3 undergoes three magnetic transitions: ferromagnetic transition at Tc ≈ 210 K, charge-ordering at Tco ≈ 175 K, and antiferromagnetic transition at TN = 155 K. In addition, the activation energy Ea ≈ 52.78 meV can be extracted by curve fitting.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11164019,51562032,and 61565013)the Inner Mongolia Natural Science Foundation,China(Grant Nos.2015MS0109,NJZZ11166,and NJZY12202)the Science and Technology in Baotou Production-Study-Research Cooperation Projects,China(Grant No.2014X1014-01)
文摘A polycrystalline sample Ndo.5Sro.3Cao.2MnO3 is prepared by the conventional solid state reaction method. The structure and magnetic properties are investigated with x-ray diffraction (XRD) patterns, a superconducting quantum in- terference device (SQUID), and electron spin resonance (ESR). The sample is in single phase with the space group Pbnm symmetry. With the decrease of temperature, Ndo.sSro.3Cao.2MnO3 undergoes three magnetic transitions: ferromagnetic transition at Tc ≈ 210 K, charge-ordering at Tco ≈ 175 K, and antiferromagnetic transition at TN = 155 K. In addition, the activation energy Ea ≈ 52.78 meV can be extracted by curve fitting.