由于网络舆情文本的数据量非常大,用人工方式很难从舆情文本中发现舆情热点。利用LDA(Latent Dirichlet Allocation)主题模型的文本降维及词语聚类功能,能够从海量的舆情文本中自动提取所关注的焦点主题词。但由于缺乏动态的时间分布机...由于网络舆情文本的数据量非常大,用人工方式很难从舆情文本中发现舆情热点。利用LDA(Latent Dirichlet Allocation)主题模型的文本降维及词语聚类功能,能够从海量的舆情文本中自动提取所关注的焦点主题词。但由于缺乏动态的时间分布机制,LDA难以捕捉随时间变化的热点词链。本文提出了加入动态时间层的DTD-LDA(Dynamic Time Distribution LDA)模型,增加了文档-时间和时间-主题的动态分布机制,改善了LDA主题词对时间变化的敏感性,可以有效提取迅速变化的舆情文本热点词链。实验表明,DTD-LDA相比较同类模型,在动态热点词链的提取上具有更好的准确率和召回率。展开更多
文摘由于网络舆情文本的数据量非常大,用人工方式很难从舆情文本中发现舆情热点。利用LDA(Latent Dirichlet Allocation)主题模型的文本降维及词语聚类功能,能够从海量的舆情文本中自动提取所关注的焦点主题词。但由于缺乏动态的时间分布机制,LDA难以捕捉随时间变化的热点词链。本文提出了加入动态时间层的DTD-LDA(Dynamic Time Distribution LDA)模型,增加了文档-时间和时间-主题的动态分布机制,改善了LDA主题词对时间变化的敏感性,可以有效提取迅速变化的舆情文本热点词链。实验表明,DTD-LDA相比较同类模型,在动态热点词链的提取上具有更好的准确率和召回率。