采用阳极氧化法在不同电解液中制备TiO2纳米管光电极,通过SEM、UV-VIS-DRS、XRD表征TiO2纳米管阵列,考察氧化时间、煅烧温度、电解液组成对TiO2纳米管形貌和尺寸的影响。结果表明:TiO2纳米管的形成需要一定的氧化时间,其光吸收性能随...采用阳极氧化法在不同电解液中制备TiO2纳米管光电极,通过SEM、UV-VIS-DRS、XRD表征TiO2纳米管阵列,考察氧化时间、煅烧温度、电解液组成对TiO2纳米管形貌和尺寸的影响。结果表明:TiO2纳米管的形成需要一定的氧化时间,其光吸收性能随着氧化时间的增加而提高。在NH4F+H2SO4电解液中制备的TiO2纳米管管径在100~110 nm之间,对紫外-可见光的吸收高于在NH4F+H2C2O4、HF+H2SO4和HF三种电解液体系中氧化的纳米管。相同条件下,对在NH4F+H2SO4电解液中制备的TiO2纳米管光电极进行亚甲基蓝溶液的光电催化实验,降解30 m in脱色率达到80%,其催化效果是单纯光催化的1.3倍。展开更多
建立浓缩苹果汁样品中熊果苷的固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)检测方法。浓缩苹果汁样品用水溶解、过滤后,用聚苯乙烯-二乙烯基苯共聚物(PS-DVB)固相萃取柱净化,外标法定量。测定时用Eclipse Plus C18色谱柱(100mm...建立浓缩苹果汁样品中熊果苷的固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)检测方法。浓缩苹果汁样品用水溶解、过滤后,用聚苯乙烯-二乙烯基苯共聚物(PS-DVB)固相萃取柱净化,外标法定量。测定时用Eclipse Plus C18色谱柱(100mm×2.1mm,1.8μm)分离,甲醇-水系统梯度洗脱;MS测定采用多反应监测(MRM)模式。熊果苷的检出限为0.02mg/L,在0.04~2.0mg/L的范围内标准溶液的峰面积与质量浓度呈良好的线性关系,回收率为75.2%~102.7%,相对标准偏差(RSD)低于8.9%。该方法简便、快速、灵敏,可用于浓缩苹果汁样品中熊果苷的检测和确证。展开更多
文摘采用阳极氧化法在不同电解液中制备TiO2纳米管光电极,通过SEM、UV-VIS-DRS、XRD表征TiO2纳米管阵列,考察氧化时间、煅烧温度、电解液组成对TiO2纳米管形貌和尺寸的影响。结果表明:TiO2纳米管的形成需要一定的氧化时间,其光吸收性能随着氧化时间的增加而提高。在NH4F+H2SO4电解液中制备的TiO2纳米管管径在100~110 nm之间,对紫外-可见光的吸收高于在NH4F+H2C2O4、HF+H2SO4和HF三种电解液体系中氧化的纳米管。相同条件下,对在NH4F+H2SO4电解液中制备的TiO2纳米管光电极进行亚甲基蓝溶液的光电催化实验,降解30 m in脱色率达到80%,其催化效果是单纯光催化的1.3倍。
文摘建立浓缩苹果汁样品中熊果苷的固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)检测方法。浓缩苹果汁样品用水溶解、过滤后,用聚苯乙烯-二乙烯基苯共聚物(PS-DVB)固相萃取柱净化,外标法定量。测定时用Eclipse Plus C18色谱柱(100mm×2.1mm,1.8μm)分离,甲醇-水系统梯度洗脱;MS测定采用多反应监测(MRM)模式。熊果苷的检出限为0.02mg/L,在0.04~2.0mg/L的范围内标准溶液的峰面积与质量浓度呈良好的线性关系,回收率为75.2%~102.7%,相对标准偏差(RSD)低于8.9%。该方法简便、快速、灵敏,可用于浓缩苹果汁样品中熊果苷的检测和确证。