In the web context, there is an urgent need for a self-healing database system which has the ability to automatically locate and undo a set of transactions that are corrupted by malicious attacks. The metrics of survi...In the web context, there is an urgent need for a self-healing database system which has the ability to automatically locate and undo a set of transactions that are corrupted by malicious attacks. The metrics of survivability and availability require a database to provide continuous services during the period of recovery, which is referred to as dynamic recovery. In this paper, we present that an extended read operation from a corrupted data would cause damage spreading. We build a fine grained transaction log to record the extended read and write operations while user transactions are processing. Based on that, we propose a dynamic recovery system to implement the damage repair. The system captures damage spreading caused by extended read-write dependency between transactions. It also retains the execution results for blind write transactions and gives a solution to the issues of recovery conflicts caused by forward recovery. Moreover, a confinement activity is imposed on the in-repairing data to prevent a further damage propagation while the data recovery is processing. The performance evaluation in our experiments shows that the system is reliable and highly efficient.展开更多
基金Supported by the National Hi-Tech Research and Development 863 program of China under Grant No. 2006AA01Z430
文摘In the web context, there is an urgent need for a self-healing database system which has the ability to automatically locate and undo a set of transactions that are corrupted by malicious attacks. The metrics of survivability and availability require a database to provide continuous services during the period of recovery, which is referred to as dynamic recovery. In this paper, we present that an extended read operation from a corrupted data would cause damage spreading. We build a fine grained transaction log to record the extended read and write operations while user transactions are processing. Based on that, we propose a dynamic recovery system to implement the damage repair. The system captures damage spreading caused by extended read-write dependency between transactions. It also retains the execution results for blind write transactions and gives a solution to the issues of recovery conflicts caused by forward recovery. Moreover, a confinement activity is imposed on the in-repairing data to prevent a further damage propagation while the data recovery is processing. The performance evaluation in our experiments shows that the system is reliable and highly efficient.