期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
国标麻将的多尺度骨干神经网络模型
1
作者
代君学
李霞丽
+1 位作者
刘博
王昭琦
《重庆理工大学学报(自然科学)》
CAS
北大核心
2024年第5期137-144,共8页
在有多轮次、状态空间巨大、81种不同类别的番种、胡牌方式复杂的国标麻将中,普通的神经网络难以对复杂的数据进行表达和拟合。首次将多尺度骨干的深度神经网络用于实现麻将AI,以更好地捕获国标麻将的局部以及全局特征,适用于处理复杂数...
在有多轮次、状态空间巨大、81种不同类别的番种、胡牌方式复杂的国标麻将中,普通的神经网络难以对复杂的数据进行表达和拟合。首次将多尺度骨干的深度神经网络用于实现麻将AI,以更好地捕获国标麻将的局部以及全局特征,适用于处理复杂数据,做出更准确的游戏策略。基于IJCAI 2020 Champion的对局数据,对训练数据进行数据增强。采用增强后的数据,在NVIDAI GeForce RTX3090 LapTop GPU上进行了5天的监督学习训练,训练出的模型有52 M参数,动作准确率达到93.47%,弃牌准确率达到83.93%,鸣牌准确率达到97.56%。将提出的模型部署到北京大学开发的Botzone平台上,进入天梯榜前1%。
展开更多
关键词
深度学习
麻将
卷积神经网络
Res2Net50
多尺度骨干架构
下载PDF
职称材料
题名
国标麻将的多尺度骨干神经网络模型
1
作者
代君学
李霞丽
刘博
王昭琦
机构
中央民族大学民族语言智能分析与安全治理教育部重点实验室
中央民族大学信息工程学院
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2024年第5期137-144,共8页
基金
国家自然科学基金项目(62276285,62236011)。
文摘
在有多轮次、状态空间巨大、81种不同类别的番种、胡牌方式复杂的国标麻将中,普通的神经网络难以对复杂的数据进行表达和拟合。首次将多尺度骨干的深度神经网络用于实现麻将AI,以更好地捕获国标麻将的局部以及全局特征,适用于处理复杂数据,做出更准确的游戏策略。基于IJCAI 2020 Champion的对局数据,对训练数据进行数据增强。采用增强后的数据,在NVIDAI GeForce RTX3090 LapTop GPU上进行了5天的监督学习训练,训练出的模型有52 M参数,动作准确率达到93.47%,弃牌准确率达到83.93%,鸣牌准确率达到97.56%。将提出的模型部署到北京大学开发的Botzone平台上,进入天梯榜前1%。
关键词
深度学习
麻将
卷积神经网络
Res2Net50
多尺度骨干架构
Keywords
deep learning
mahjong
convolutional neural network
Res2Net50
multi-scale backbone architecture
分类号
G892 [文化科学—体育学]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
国标麻将的多尺度骨干神经网络模型
代君学
李霞丽
刘博
王昭琦
《重庆理工大学学报(自然科学)》
CAS
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部