期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
国标麻将的多尺度骨干神经网络模型
1
作者 代君学 李霞丽 +1 位作者 刘博 王昭琦 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期137-144,共8页
在有多轮次、状态空间巨大、81种不同类别的番种、胡牌方式复杂的国标麻将中,普通的神经网络难以对复杂的数据进行表达和拟合。首次将多尺度骨干的深度神经网络用于实现麻将AI,以更好地捕获国标麻将的局部以及全局特征,适用于处理复杂数... 在有多轮次、状态空间巨大、81种不同类别的番种、胡牌方式复杂的国标麻将中,普通的神经网络难以对复杂的数据进行表达和拟合。首次将多尺度骨干的深度神经网络用于实现麻将AI,以更好地捕获国标麻将的局部以及全局特征,适用于处理复杂数据,做出更准确的游戏策略。基于IJCAI 2020 Champion的对局数据,对训练数据进行数据增强。采用增强后的数据,在NVIDAI GeForce RTX3090 LapTop GPU上进行了5天的监督学习训练,训练出的模型有52 M参数,动作准确率达到93.47%,弃牌准确率达到83.93%,鸣牌准确率达到97.56%。将提出的模型部署到北京大学开发的Botzone平台上,进入天梯榜前1%。 展开更多
关键词 深度学习 麻将 卷积神经网络 Res2Net50 多尺度骨干架构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部