We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of th...We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of the quantum critical point.A double peak at the gap edge plus a dip feature at zero-bias has been observed on the PCAR spectra,indicative of the presence of a nodeless gap in BaFe_(2)(As_(0.7)P_(0.3))_(2).Detailed analysis within a sophisticated theoretical model reveals an anisotropic gap with deep gap minima.The PCARs also feature additional structures related to the electron-bosonic coupling mode.Using the extracted superconducting energy gap value,a characteristic bosonic energy Ω_(b) and its temperature dependence are obtained,comparable with the spin-resonance energy observed in neutron scattering experiment.These results indicate a magnetism-driven quantum critical point in the BaFe_(2)(As_(1-x)P_(x))_(2) system.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11774303 and 11574373)the National Key Research and Development Program of China(Grant Nos.2022YFA1403402,2021YFA1400401,and 2020YFA0406003)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB33000000 and GJTD-2020-01)financial support from the Joint Fund of Yunnan Provincial Science and Technology Department(Grant No.2019FY003008)。
文摘We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of the quantum critical point.A double peak at the gap edge plus a dip feature at zero-bias has been observed on the PCAR spectra,indicative of the presence of a nodeless gap in BaFe_(2)(As_(0.7)P_(0.3))_(2).Detailed analysis within a sophisticated theoretical model reveals an anisotropic gap with deep gap minima.The PCARs also feature additional structures related to the electron-bosonic coupling mode.Using the extracted superconducting energy gap value,a characteristic bosonic energy Ω_(b) and its temperature dependence are obtained,comparable with the spin-resonance energy observed in neutron scattering experiment.These results indicate a magnetism-driven quantum critical point in the BaFe_(2)(As_(1-x)P_(x))_(2) system.