应用不动点理论研究了如下的具有变时滞的细胞神经网络模型dxi(t)/dt=-ai(t)xi(t)+sum from j=1 to n[bij(t)fj(xj(t))+cij(t)fj(xj(xj(t-τj(t)))]+Ii(t) t≥0,i=1,2,…,n,其中xi(t)(i=1,2,…,n)是神经细胞的状态;n是细胞的数量;B(t)=(...应用不动点理论研究了如下的具有变时滞的细胞神经网络模型dxi(t)/dt=-ai(t)xi(t)+sum from j=1 to n[bij(t)fj(xj(t))+cij(t)fj(xj(xj(t-τj(t)))]+Ii(t) t≥0,i=1,2,…,n,其中xi(t)(i=1,2,…,n)是神经细胞的状态;n是细胞的数量;B(t)=(bij(t))n×n和C=(cij(t))n×n连续的矩阵函数,I(t)=(I1(t),I2(t),…,In(t))T是连续的概周期函数,f(x)=(f1(x1),f2(x2),…,fn(xn))T是细胞活动函数,A(t)=diag(a1(t),a2(t),…,an(t)),并且ai(t)>0,(i=1,2,…,n),时滞0≤τi(t)≤τ(i=1,2,…,n)是有界函数,得出了其概周期解得存在性和全局指数稳定性的充分条件。展开更多
文摘应用不动点理论研究了如下的具有变时滞的细胞神经网络模型dxi(t)/dt=-ai(t)xi(t)+sum from j=1 to n[bij(t)fj(xj(t))+cij(t)fj(xj(xj(t-τj(t)))]+Ii(t) t≥0,i=1,2,…,n,其中xi(t)(i=1,2,…,n)是神经细胞的状态;n是细胞的数量;B(t)=(bij(t))n×n和C=(cij(t))n×n连续的矩阵函数,I(t)=(I1(t),I2(t),…,In(t))T是连续的概周期函数,f(x)=(f1(x1),f2(x2),…,fn(xn))T是细胞活动函数,A(t)=diag(a1(t),a2(t),…,an(t)),并且ai(t)>0,(i=1,2,…,n),时滞0≤τi(t)≤τ(i=1,2,…,n)是有界函数,得出了其概周期解得存在性和全局指数稳定性的充分条件。