期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于路径相似表与个体迁移策略的多路径覆盖测试
1
作者 钱忠胜 孙志旺 +4 位作者 俞情媛 秦朗悦 蒋鹏 万子珑 王亚惠 《计算机科学与探索》 CSCD 北大核心 2024年第4期947-962,共16页
将遗传算法用于多路径覆盖测试中是个研究热点,在新旧种群迭代过程中,旧种群中可能包含其他子种群的优秀个体,这部分个体未被充分利用,造成资源浪费;同时,种群中的个体数会远大于可达路径数,而每个个体都会经过某一条可达路径,这样会有... 将遗传算法用于多路径覆盖测试中是个研究热点,在新旧种群迭代过程中,旧种群中可能包含其他子种群的优秀个体,这部分个体未被充分利用,造成资源浪费;同时,种群中的个体数会远大于可达路径数,而每个个体都会经过某一条可达路径,这样会有多个个体经过同一条路径,导致重复计算个体与目标路径的相似度。基于此,提出结合路径相似表与个体迁移的多路径覆盖测试方法以提高测试效率。通过路径相似表存储已计算得到的路径相似度值,避免该值被重复计算,减少测试时间。在进化过程中,将个体路径与其他目标路径进行比较,若相似度达到阈值,则将此优秀个体迁移至该路径对应的子种群中,提高个体利用率并减少进化代数。由实验可知,该方法与其他六种同类经典方法在八个程序上的平均生成时间降低最高达44.64%,最低为2.64%,平均进化代数降低最高达35.08%,最低为6.13%,故该方法有效地提高了测试效率。 展开更多
关键词 测试用例 路径相似表 个体迁移 多路径覆盖 多种群遗传算法
下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成
2
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 SVM XGBoost 链式模型 多路径覆盖
下载PDF
结合用户共同意图及社交关系的群组推荐方法
3
作者 钱忠胜 张丁 +3 位作者 李端明 王亚惠 姚昌森 俞情媛 《计算机科学与探索》 CSCD 北大核心 2024年第5期1368-1382,共15页
已有的群组推荐模型,在求解用户表示时大多比较单调且仅简单利用用户间的社交关系,使得用户表示不够准确,并且大都未考虑用户共同意图以及社交关系对群组偏好的影响,导致推荐的项目很难符合用户的需求。基于此,提出一种结合用户共同意... 已有的群组推荐模型,在求解用户表示时大多比较单调且仅简单利用用户间的社交关系,使得用户表示不够准确,并且大都未考虑用户共同意图以及社交关系对群组偏好的影响,导致推荐的项目很难符合用户的需求。基于此,提出一种结合用户共同意图及社交关系的群组推荐模型(GR-UCISI)。首先构造用户-项目交互历史与社交关系相结合的用户意图分离模型,利用图神经网络采集每个用户的用户-项目交互以及社交关系信息,求解用户意图和项目表示;其次利用网络游走算法与K-means聚类算法将用户分组,结合用户群组、用户意图以及群组意图聚合过程获取群组共同意图表示;最后根据群组共同意图表示与项目表示得出群组推荐项目列表。该方法充分考虑到用户的个性以及群组成员间的共性对群组偏好的影响,同时结合社交关系缓解数据稀疏性问题,提升模型性能。实验结果表明,与9个对比模型中推荐效果最好的模型相比,在Gowalla数据集上,GR-UCISI的Precision和NDCG指标值分别提高3.01%和5.26%;在Yelp-2018数据集上,GR-UCISI的Precision和NDCG指标值分别提高2.96%和1.12%。 展开更多
关键词 群组推荐 用户共同意图 社交关系 图神经网络
下载PDF
结合注意力CNN与GNN的信息融合推荐方法 被引量:1
4
作者 钱忠胜 赵畅 +1 位作者 俞情媛 李端明 《软件学报》 EI CSCD 北大核心 2023年第5期2317-2336,共20页
稀疏性问题一直是推荐系统面临的主要挑战,而信息融合推荐可以利用用户的评论、评分以及信任等信息发掘用户的偏好来缓解这一问题,从而为目标用户生成相应的推荐.用户、项目信息的充分学习是构建一个成功推荐系统的关键.但不同用户对不... 稀疏性问题一直是推荐系统面临的主要挑战,而信息融合推荐可以利用用户的评论、评分以及信任等信息发掘用户的偏好来缓解这一问题,从而为目标用户生成相应的推荐.用户、项目信息的充分学习是构建一个成功推荐系统的关键.但不同用户对不同项目有不同的偏好,且用户的兴趣偏好及社交圈是动态变化的.提出一种结合深度学习与信息融合的推荐方法来解决稀疏性等问题.特别地,构建了一种新的深度学习模型——结合注意力卷积神经网络(attention CNN)与图神经网络(GNN)的信息融合推荐模型ACGIF.首先,在CNN中加入注意力机制来处理评论信息,从评论信息中学习用户和项目的个性化表示.根据评论编码学习评论表示,通过用户/项目编码学习评论中用户/项目表示.加入个性化注意力机制来筛选不同重要性级别的评论.然后,利用GNN来处理评分和信任信息.对于每个用户来说,扩散过程从最初的嵌入开始,融合相关特性和捕获潜在行为偏好的自由用户潜在向量.设计了一个分层的影响传播结构,以模拟用户的潜在嵌入如何随着社交扩散过程的继续而演变.最后,对前两部分得到的用户对项目的偏好向量进行加权融合,获得最终的用户对于项目的偏好向量.在4组公开数据集上,以推荐结果的MAE和RMSE作为评估指标进行了实验验证.结果表明,与现有的7个典型推荐模型相比,所提模型的推荐效果和运行时间均占优. 展开更多
关键词 推荐系统 注意力机制 卷积神经网络 图神经网络 信息融合
下载PDF
基于关键边概率与路径层接近度的多路径覆盖测试
5
作者 钱忠胜 成轶伟 +3 位作者 俞情媛 张丁 姚昌森 秦朗悦 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1341-1349,共9页
遗传算法解决多路径覆盖中难覆盖边的问题,是当前软件测试数据自动生成领域的一个研究热点.现有方法解决多路径覆盖问题的效果不够理想,本文提出一种将关键边概率与路径层接近度相结合的多路径覆盖测试方法 .首先,本文计算节点被穿越概... 遗传算法解决多路径覆盖中难覆盖边的问题,是当前软件测试数据自动生成领域的一个研究热点.现有方法解决多路径覆盖问题的效果不够理想,本文提出一种将关键边概率与路径层接近度相结合的多路径覆盖测试方法 .首先,本文计算节点被穿越概率找到难覆盖节点,通过难覆盖节点找到难覆盖边(即,关键边),生成目标路径.然后,本文根据关键边概率计算个体贡献度,并通过程序的路径层图计算路径层接近度,再由个体贡献度及路径层接近度设计适应度函数.最后,本文利用多种群遗传算法进化生成测试数据以覆盖目标路径,在进化过程中子种群覆盖当前目标路径后,继续尝试覆盖与其相似的其它路径.实验结果表明,该方法与同类经典方法相比,在保证平均进化时间和平均进化代数占优的同时,稳定性也有所提高,生成时间增幅标准偏差较最优的降低10.19%,离散系数降低10.79%.进化代数增幅标准偏差较最优的降低19.98%,离散系数降低28.02%. 展开更多
关键词 关键边概率 路径层接近度 多路径覆盖 遗传算法 适应度函数 个体贡献度
下载PDF
基于支持向量机回归模型的测试用例生成与重用 被引量:12
6
作者 钱忠胜 俞情媛 +3 位作者 宋涛 朱懿敏 祝洁 赵畅 《电子学报》 EI CAS CSCD 北大核心 2021年第7期1386-1391,共6页
在软件测试领域,利用遗传算法生成测试用例是一个研究热点.传统方法在利用遗传算法生成测试用例时,需要计算每个个体的适应度.为了降低适应度计算的时间消耗并重用测试用例,提出一种融入支持向量机回归模型的测试用例生成与重用的方法.... 在软件测试领域,利用遗传算法生成测试用例是一个研究热点.传统方法在利用遗传算法生成测试用例时,需要计算每个个体的适应度.为了降低适应度计算的时间消耗并重用测试用例,提出一种融入支持向量机回归模型的测试用例生成与重用的方法.在使用遗传算法生成测试用例的过程中,利用一定数量的个体及其适应度作为样本训练支持向量机回归模型.在之后的种群进化中,根据回归模型计算个体适应度,同时利用回归模型查找适应度较高的个体并重用到新种群的进化中.在某大型程序实验中,该方法与同类经典方法相比,覆盖率提高了3%,平均进化代数也有所降低,其降低百分比达85.97%. 展开更多
关键词 测试用例 测试重用 支持向量机 遗传算法 适应度
下载PDF
结合关键点概率与路径相似度的多路径覆盖策略 被引量:7
7
作者 钱忠胜 祝洁 +3 位作者 朱懿敏 俞情媛 李端明 宋佳 《软件学报》 EI CSCD 北大核心 2022年第2期434-454,共21页
利用多种群遗传算法解决多路径覆盖问题,是测试数据自动生成领域一个重要的研究方向.为了提高多路径覆盖测试数据自动生成的效率,提出一种将关键点概率和路径相似度相结合的多路径覆盖策略.首先,将理论路径划分成易覆盖、难覆盖及不可... 利用多种群遗传算法解决多路径覆盖问题,是测试数据自动生成领域一个重要的研究方向.为了提高多路径覆盖测试数据自动生成的效率,提出一种将关键点概率和路径相似度相结合的多路径覆盖策略.首先,将理论路径划分成易覆盖、难覆盖及不可达路径;然后,通过易覆盖路径统计关键点概率,依此概率计算个体对生成测试数据的贡献度,并利用贡献度改进适应度函数,同时根据关键点概率对目标路径进行排序;最后,使用多种群遗传算法生成覆盖目标路径的测试数据,在进化过程中,子种群覆盖当前目标路径后,继续尝试覆盖该目标路径的相似路径.实验结果表明,该方法能够有效地提高多路径覆盖测试数据生成的效率. 展开更多
关键词 多种群遗传算法 多路径覆盖 关键点概率 路径相似度 贡献度
下载PDF
利用函数影响力的相似程序间测试用例重用与生成 被引量:2
8
作者 钱忠胜 宋佳 +2 位作者 俞情媛 成轶伟 孙志旺 《电子学报》 EI CAS CSCD 北大核心 2022年第7期1696-1707,共12页
在回归测试过程中,用例重用是一项很重要的工作,其充分利用软件升级变更前的已有资源,提高测试的效率.从已有研究来看,回归测试的研究大部分侧重于用例优化方面,少部分提到利用程序升级变更前后的相似性来重用测试用例以提高用例生成效... 在回归测试过程中,用例重用是一项很重要的工作,其充分利用软件升级变更前的已有资源,提高测试的效率.从已有研究来看,回归测试的研究大部分侧重于用例优化方面,少部分提到利用程序升级变更前后的相似性来重用测试用例以提高用例生成效率.针对回归测试用例重用问题,提出一种重用变更前相似程序的测试信息,并通过设计的适应度函数为变更后程序进化生成新用例的方法.该方法利用构建的函数调用图进行程序相似部分的检测,并根据函数影响力设计适应度函数来调整个体的适应度值,保留适应度值高的优秀个体;再通过重用变更前相似部分的用例,以及进化生成的变更后的部分用例,来构成回归测试中新程序的用例.实验结果表明,在目标路径覆盖率上,对于中小规模和大规模工业程序,本文方法比经典方法分别可提高8%和17%. 展开更多
关键词 测试用例 程序相似性 函数影响力 关键函数 回归测试
下载PDF
一种融合用户动态偏好和注意力机制的跨领域推荐方法 被引量:2
9
作者 钱忠胜 涂宇 +2 位作者 俞情媛 李端明 孙志旺 《小型微型计算机系统》 CSCD 北大核心 2022年第6期1335-1344,共10页
作为当今电子商务中的一项重要技术,推荐系统的重要性日益提升.在项目空间上用户的评分数据十分稀疏,导致推荐系统的质量不佳.商品评论中蕴含着丰富的信息,通过提取评论文本信息能够有效地减少数据稀疏性带来的影响.事实上,用户的偏好... 作为当今电子商务中的一项重要技术,推荐系统的重要性日益提升.在项目空间上用户的评分数据十分稀疏,导致推荐系统的质量不佳.商品评论中蕴含着丰富的信息,通过提取评论文本信息能够有效地减少数据稀疏性带来的影响.事实上,用户的偏好并非一成不变的,将不同时间段设置不同的权重能更有效地描述用户的整体状况.在神经网络算法广泛应用的背景下,将神经网络引入到跨领域推荐中可以发现不同领域用户偏好的映射关系.此外,注意力机制是一种流行的深度学习方法,将注意力机制与主题模型结合,提出一种基于注意力机制的跨领域推荐方法.首先,使用LDA(Latent Dirichlet Allocation)主题模型分别提取源领域和目标领域的项目主题分布.接着,将其与用户评分、时间权重因子、注意力机制结合,得到用户的动态偏好.然后,使用BP(Back Propagation)神经网络学习用户偏好的映射关系,并将用户在源领域与目标领域的偏好结合.最后,通过协同过滤的方法进行评分预测.实验结果表明,提出的推荐方法在亚马逊电子商品、影视与以及音乐的评分评论数据集上较其它传统推荐策略有着更好的推荐效果. 展开更多
关键词 主题模型 动态偏好 跨领域推荐 神经网络 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部