转子系统是燃气轮机极为重要的组成部件,对其进行故障诊断与分析对燃气轮机的安全稳定运行具有重要意义。转子故障信号为典型的非线性、非平稳和微弱性时间序列。提出了一种基于改进主成分分析(Improved Principal Component Analysis,I...转子系统是燃气轮机极为重要的组成部件,对其进行故障诊断与分析对燃气轮机的安全稳定运行具有重要意义。转子故障信号为典型的非线性、非平稳和微弱性时间序列。提出了一种基于改进主成分分析(Improved Principal Component Analysis,ImPCA)的燃气轮机转子故障诊断方法。首先针对传统PCA主分量个数确定难题,将贝叶斯理论引入PCA,构建贝塔先验主成分分析模型对转子故障信号进行自适应分解,将其转化为少数几个主分量(Principal Component,PC)之和的形式,然后将PC对应的大特征值作为特征向量并构建SVM分类器进行分类,实现对“不平衡故障”“动静件碰磨故障”和“不对中故障”三种燃气轮机转子故障的有效分类诊断。基于实际数据的实验结果表明,所提方法能够获得97.2%的平均诊断正确率,并且具有噪声稳健性,适用于实际工程应用场景。展开更多
文摘转子系统是燃气轮机极为重要的组成部件,对其进行故障诊断与分析对燃气轮机的安全稳定运行具有重要意义。转子故障信号为典型的非线性、非平稳和微弱性时间序列。提出了一种基于改进主成分分析(Improved Principal Component Analysis,ImPCA)的燃气轮机转子故障诊断方法。首先针对传统PCA主分量个数确定难题,将贝叶斯理论引入PCA,构建贝塔先验主成分分析模型对转子故障信号进行自适应分解,将其转化为少数几个主分量(Principal Component,PC)之和的形式,然后将PC对应的大特征值作为特征向量并构建SVM分类器进行分类,实现对“不平衡故障”“动静件碰磨故障”和“不对中故障”三种燃气轮机转子故障的有效分类诊断。基于实际数据的实验结果表明,所提方法能够获得97.2%的平均诊断正确率,并且具有噪声稳健性,适用于实际工程应用场景。