为了提高菠萝收获的机械化和自动化水平,该研究采用改进RRT*(Rapidly-exploring Random Trees Star)算法进行菠萝采收机全局作业路径规划。首先引入自启发式思想约束采样点的生成,借鉴人工势场引入方向权重对新节点拓展方向进行约束,同...为了提高菠萝收获的机械化和自动化水平,该研究采用改进RRT*(Rapidly-exploring Random Trees Star)算法进行菠萝采收机全局作业路径规划。首先引入自启发式思想约束采样点的生成,借鉴人工势场引入方向权重对新节点拓展方向进行约束,同时计算合适的权重取值范围,采用双向拓展加快迭代速度,然后利用贪心算法修剪路径冗余节点,并利用Cantmull-Rom插值函数对路径进行平滑处理。根据农田道路情况创建多障碍物、迷宫和狭窄通道3种仿真环境,分别对RRT*算法、双向RRT*算法和改进后RRT*算法的性能进行测试。试验结果表明:3种环境下,本文算法的平均收敛时间是RRT*算法的18%,是双向RRT*算法的46.12%,平均规划速度是RRT*算法的5.7倍,是双向RRT*算法的2.3倍左右,平均拓展节点数量比RRT*算法减少87.23%,比双向RRT*算法减少52.52%,平均路径长度比RRT*算法减少3.81%,比双向RRT*算法减少6.08%。田间试验结果表明:本文算法的规划时间仅为RRT*算法的14.12%,为双向RRT*的20.34%,迭代次数比RRT*算法减少80.89%,比双向RRT*减少69.70%。另外,RRT*和双向RRT*算法规划路径上大于60°的转角分别是本文算法的1.56和2.06倍,大于100°的转角分别是本文算法的1.55和2.18倍,本文算法规划的路径更平滑。研究结果可为菠萝采收机导航提供参考。展开更多
基金National Science Project with Research Grant 50775079.Project of Science and Technology of Guangdong Province with Research Grant 07300720 and 07006692Key Project of Science and Technology of Guangdong Province with Research Grant 2007B010200068.
文摘为了提高菠萝收获的机械化和自动化水平,该研究采用改进RRT*(Rapidly-exploring Random Trees Star)算法进行菠萝采收机全局作业路径规划。首先引入自启发式思想约束采样点的生成,借鉴人工势场引入方向权重对新节点拓展方向进行约束,同时计算合适的权重取值范围,采用双向拓展加快迭代速度,然后利用贪心算法修剪路径冗余节点,并利用Cantmull-Rom插值函数对路径进行平滑处理。根据农田道路情况创建多障碍物、迷宫和狭窄通道3种仿真环境,分别对RRT*算法、双向RRT*算法和改进后RRT*算法的性能进行测试。试验结果表明:3种环境下,本文算法的平均收敛时间是RRT*算法的18%,是双向RRT*算法的46.12%,平均规划速度是RRT*算法的5.7倍,是双向RRT*算法的2.3倍左右,平均拓展节点数量比RRT*算法减少87.23%,比双向RRT*算法减少52.52%,平均路径长度比RRT*算法减少3.81%,比双向RRT*算法减少6.08%。田间试验结果表明:本文算法的规划时间仅为RRT*算法的14.12%,为双向RRT*的20.34%,迭代次数比RRT*算法减少80.89%,比双向RRT*减少69.70%。另外,RRT*和双向RRT*算法规划路径上大于60°的转角分别是本文算法的1.56和2.06倍,大于100°的转角分别是本文算法的1.55和2.18倍,本文算法规划的路径更平滑。研究结果可为菠萝采收机导航提供参考。