豆类分离蛋白因其蛋白含量高,营养价值丰富,常被应用于食品开发。研究在对大豆(soy protein isolate,SPI)、豌豆(peaprotein isolate,PPI)、鹰嘴豆(chickpea protein isolate,CPI)以及蚕豆分离蛋白(fabaprotein isolate,FPI)的原料特性...豆类分离蛋白因其蛋白含量高,营养价值丰富,常被应用于食品开发。研究在对大豆(soy protein isolate,SPI)、豌豆(peaprotein isolate,PPI)、鹰嘴豆(chickpea protein isolate,CPI)以及蚕豆分离蛋白(fabaprotein isolate,FPI)的原料特性进行系统的评价基础上,使用挤压技术制备组织化蛋白,并测定其质构特性及色泽。结果表明:不同豆类分离蛋白的基本成分、功能特性、氨基酸组成以及流变学特性存在着显著性差异(P<0.05),PPI的蛋白质含量、持水性、乳化性以及必需氨基酸含量均高于SPI、CPI以及FPI。且PPI是易溶解的豆类蛋白,其在酸性(pH=2)和碱性(pH=12)条件下有着较好的溶解度。PPI挤压得到的组织化蛋白的硬度(3699.53 g)、弹性(0.94)、咀嚼性(2616.18 g)均大于其他3种豆类分离蛋白。PPI挤压后的组织化蛋白表面更加明亮光滑,有利于后续产品的加工赋色。CPI和SPI挤压后的组织化蛋白颜色较深。各类豆类组织化蛋白呈现出截然不同的二级结构,其中在PPI中,β-折叠质量分数最高(59%),而在CPI中以α-螺旋为主(36.7%),与此同时,CPI中β-转角占18.4%为主要的构型。其中β-折叠在豆类组织化蛋白形成中发挥着关键的作用。通过对豆类分离蛋白原料特性与组织化蛋白品质相关性分析发现,原料特性与其挤压后的组织化蛋白品质之间有一定的联系,且呈显著性正相关。展开更多
文摘豆类分离蛋白因其蛋白含量高,营养价值丰富,常被应用于食品开发。研究在对大豆(soy protein isolate,SPI)、豌豆(peaprotein isolate,PPI)、鹰嘴豆(chickpea protein isolate,CPI)以及蚕豆分离蛋白(fabaprotein isolate,FPI)的原料特性进行系统的评价基础上,使用挤压技术制备组织化蛋白,并测定其质构特性及色泽。结果表明:不同豆类分离蛋白的基本成分、功能特性、氨基酸组成以及流变学特性存在着显著性差异(P<0.05),PPI的蛋白质含量、持水性、乳化性以及必需氨基酸含量均高于SPI、CPI以及FPI。且PPI是易溶解的豆类蛋白,其在酸性(pH=2)和碱性(pH=12)条件下有着较好的溶解度。PPI挤压得到的组织化蛋白的硬度(3699.53 g)、弹性(0.94)、咀嚼性(2616.18 g)均大于其他3种豆类分离蛋白。PPI挤压后的组织化蛋白表面更加明亮光滑,有利于后续产品的加工赋色。CPI和SPI挤压后的组织化蛋白颜色较深。各类豆类组织化蛋白呈现出截然不同的二级结构,其中在PPI中,β-折叠质量分数最高(59%),而在CPI中以α-螺旋为主(36.7%),与此同时,CPI中β-转角占18.4%为主要的构型。其中β-折叠在豆类组织化蛋白形成中发挥着关键的作用。通过对豆类分离蛋白原料特性与组织化蛋白品质相关性分析发现,原料特性与其挤压后的组织化蛋白品质之间有一定的联系,且呈显著性正相关。