针对跟踪模型泛化能力差、跟踪模型正样本选取质量低、深层模型参数量大不利于部署等问题,本文提出了超轻量化孪生网络模型Siamese-remo。首先结合传统随机采样方法和go-turn方法,设计出新型的正负样本选取策略,增加模型泛化能力;其次采...针对跟踪模型泛化能力差、跟踪模型正样本选取质量低、深层模型参数量大不利于部署等问题,本文提出了超轻量化孪生网络模型Siamese-remo。首先结合传统随机采样方法和go-turn方法,设计出新型的正负样本选取策略,增加模型泛化能力;其次采用shiftbox-remo的数据增强方式均匀正样本分布,并提升正样本采集质量;然后通过改进后的超轻量化Mobileone-remo网络提取特征,一定程度减少深层网络对跟踪平移不变性的破坏,并预设不同特征融合参数,单独训练网络分类和回归;最终加入Center-rank loss函数,根据样本点位置影响置信度、IOU排名,对网络分类回归策略进行优化。实验证明,自然场景下奶牛单目标跟踪模型期望平均重合度(Expected average overlap,EAO)达到0.475,相对于基线模型提升0.078,与现有跟踪器对比取得了较好的成绩,且参数量仅为现有主流算法的1/20,为后续自然场景下奶牛身份识别与目标跟踪系统提供了技术支持。展开更多
准确估计电池荷电状态(State Of Charge,SOC)是延长电动汽车电池使用寿命,确保电动汽车行驶安全的重要基础.传统的深度学习估计方法存在并行化计算效率不高、训练时间长的问题.为此,利用基于自注意力机制的Informer模型来估计电池SOC....准确估计电池荷电状态(State Of Charge,SOC)是延长电动汽车电池使用寿命,确保电动汽车行驶安全的重要基础.传统的深度学习估计方法存在并行化计算效率不高、训练时间长的问题.为此,利用基于自注意力机制的Informer模型来估计电池SOC.其降低了传统自注意力机制的时间复杂度、提高了硬件使用率、降低了训练时长,与其他深度学习方法相比估计更准确.然而Informer模型仍然存在体量大及参数冗余的问题,故提出稀疏优化方法 .利用基于彩票假设的幅值迭代剪枝方法对Informer进行稀疏化处理,突出主导注意力特征,实现了在降低参数冗余的同时提升模型估计精度.在室温下,提出的稀疏化Informer模型估计电池SOC的平均绝对误差和均方根误差分别达到0.285 8%和0.383 0%,相比于Informer模型在平均绝对误差指标上估计精度提升了25%.并验证了其具备估计不同类型锂电池SOC的泛化能力.与循环神经网络、卷积神经网络这类传统的深度学习模型相比,本模型进行电池SOC估计时训练速度更快,估计准确性和稳定性更高.展开更多
文摘针对跟踪模型泛化能力差、跟踪模型正样本选取质量低、深层模型参数量大不利于部署等问题,本文提出了超轻量化孪生网络模型Siamese-remo。首先结合传统随机采样方法和go-turn方法,设计出新型的正负样本选取策略,增加模型泛化能力;其次采用shiftbox-remo的数据增强方式均匀正样本分布,并提升正样本采集质量;然后通过改进后的超轻量化Mobileone-remo网络提取特征,一定程度减少深层网络对跟踪平移不变性的破坏,并预设不同特征融合参数,单独训练网络分类和回归;最终加入Center-rank loss函数,根据样本点位置影响置信度、IOU排名,对网络分类回归策略进行优化。实验证明,自然场景下奶牛单目标跟踪模型期望平均重合度(Expected average overlap,EAO)达到0.475,相对于基线模型提升0.078,与现有跟踪器对比取得了较好的成绩,且参数量仅为现有主流算法的1/20,为后续自然场景下奶牛身份识别与目标跟踪系统提供了技术支持。