期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于帧内-帧间自融合的双流泛化人脸伪造检测方法
1
作者 董丰恺 邹晓强 +3 位作者 王佳慧 马利民 杨文元 刘熙尧 《计算机工程》 CAS CSCD 北大核心 2024年第10期185-195,共11页
现有人脸伪造检测方法往往在已知伪造类型上表现良好,但面对未知数据时检测性能有所下降,模型易受到过拟合的影响,检测泛化性不足。针对此问题,提出一种基于帧内-帧间自融合的双流泛化人脸伪造检测方法,从数据增强和检测器改进2个方面... 现有人脸伪造检测方法往往在已知伪造类型上表现良好,但面对未知数据时检测性能有所下降,模型易受到过拟合的影响,检测泛化性不足。针对此问题,提出一种基于帧内-帧间自融合的双流泛化人脸伪造检测方法,从数据增强和检测器改进2个方面提高检测泛化性。设计帧内-帧间自融合模块,分别利用同帧人脸、帧间人脸进行数据增强:帧内自融合子模块利用同帧人脸生成训练数据,从而避免人脸图像身份信息干扰;帧间自融合子模块利用伪造视频的帧间不一致性,进一步构造多样性丰富、逼真的训练数据集,从而有效防止模型的过拟合,确保检测模型的泛化能力。此外,设计基于通道注意力机制的双流特征融合网络,在网络的浅层提取RGB特征、高频特征并进行融合来挖掘伪造信息,在提升模型性能的同时缓解网络的参数增长。将模型在4个数据集上与9种主流检测方法进行对比实验,结果表明:在跨数据集实验中,所提方法较次优方法AUC均值提高1.52个百分点,EER均值降低1.5个百分点;在跨伪造方法实验中,所提方法在4种伪造方法子数据集上均取得最优或次优效果。实验结果验证了该方法优秀的泛化能力。 展开更多
关键词 人脸伪造检测 帧内-帧间自融合 特征融合 注意力机制 双流网络 泛化能力
下载PDF
基于多注意力机制的孪生网络图像隐写分析方法 被引量:1
2
作者 蒋明 张宗凯 +3 位作者 刘熙尧 郭标 胡家馨 张硕 《信息安全研究》 CSCD 2023年第6期573-579,共7页
针对从图像中提取更显著的隐写特征来提升隐写分析检测精确度的问题,提出了一种基于多注意力机制的孪生网络图像隐写分析方法.该方法采用特征融合的思想,使隐写分析模型提取更丰富的隐写特征.首先设计由ParNet块、深度可分离卷积块、标... 针对从图像中提取更显著的隐写特征来提升隐写分析检测精确度的问题,提出了一种基于多注意力机制的孪生网络图像隐写分析方法.该方法采用特征融合的思想,使隐写分析模型提取更丰富的隐写特征.首先设计由ParNet块、深度可分离卷积块、标准化注意力模块、压缩激励模块、外部注意力模块组成的孪生网络子网,通过多分支网络结构和多注意力机制提取对分类结果更有用的特征提升模型的检测能力;然后使用Cyclical Focal损失在训练的不同阶段修改训练样本的权重提高模型的训练效果.实验使用BOOSbase 1.01数据集,在WOW,S-UNIWARD,HUGO,MiPOD和HILL这5种自适应隐写算法中进行了实验.实验结果表明,该方法在检测精度上优于SRNet,ZhuNet和SiaStegNet方法,并且参数量更低. 展开更多
关键词 深度学习 图像自适应隐写术 图像隐写分析 孪生网络 注意力机制
下载PDF
基于多任务联合训练的法律文本机器阅读理解模型 被引量:5
3
作者 李芳芳 任星凯 +2 位作者 毛星亮 林中尧 刘熙尧 《中文信息学报》 CSCD 北大核心 2021年第7期109-117,125,共10页
随着裁判文书等司法大数据不断积累,如何将人工智能与法律相结合成为了法律智能研究的热点。该文针对2020中国法研杯司法人工智能挑战赛(CAIL2020)的机器阅读理解任务,提出了一种基于多任务联合训练的机器阅读理解模型。该模型将阅读理... 随着裁判文书等司法大数据不断积累,如何将人工智能与法律相结合成为了法律智能研究的热点。该文针对2020中国法研杯司法人工智能挑战赛(CAIL2020)的机器阅读理解任务,提出了一种基于多任务联合训练的机器阅读理解模型。该模型将阅读理解任务划分为四个子模块:文本编码模块、答案抽取模块、答案分类模块和支持句子判别模块。此外,该文提出了一种基于TF-IDF的"问题-文章句子"相似度匹配的数据增强方法。该方法对中国法研杯2019的训练集进行重新标注,实现数据增强。通过以上方法,最终该集成模型在2020中国法研杯机器阅读理解任务中联合F1值为74.49,取得全国第一名。 展开更多
关键词 中国法研杯 机器阅读理解 多任务联合训练
下载PDF
基于三维立体分享图像的(2,2)视觉密码方案 被引量:1
4
作者 郭璠 刘丽珏 +1 位作者 刘熙尧 陈白帆 《计算机应用研究》 CSCD 北大核心 2018年第9期2752-2756,2771,共6页
传统(2,2)视觉密码方案由于其共享图像为毫无意义的二值图像而易引起攻击者的怀疑。为此,提出了一种基于三维立体分享图像的(2,2)视觉密码方案。该方案将分享图像伪装成有意义的三维立体图,由此可较好地避免恶意攻击。而当两幅分享图像... 传统(2,2)视觉密码方案由于其共享图像为毫无意义的二值图像而易引起攻击者的怀疑。为此,提出了一种基于三维立体分享图像的(2,2)视觉密码方案。该方案将分享图像伪装成有意义的三维立体图,由此可较好地避免恶意攻击。而当两幅分享图像进行叠加等处理,人类视觉系统就能直接辨认出秘密信息。与其他图像加密方法的性能对比与定量评估说明,本方案在较好隐藏秘密信息的同时,具有相对较快的运算速度。正是由于该方案秘密恢复的简单性和有效性,具有广泛的应用前景。 展开更多
关键词 视觉密码 三维立体图 分享图像 (2 2)方案
下载PDF
基于关联规则挖掘的高校学生选课分析
5
作者 李芳芳 唐九阳 +2 位作者 廖胜辉 刘熙尧 赵荣昌 《黑龙江科技信息》 2016年第22期71-71,共1页
将关联规则挖掘方法应用于高校选课数据,分析选课数据之间隐藏的关联关系,提取有价值、有规律的信息。
关键词 数据挖掘 关联规则 高校选课
下载PDF
一种安全的无线体域网医疗信息管理系统研究与设计 被引量:5
6
作者 马利民 张伟 刘熙尧 《信息网络安全》 CSCD 北大核心 2019年第5期38-46,共9页
基于无线体域网(Wireless Body Area Network, WBAN)实现的医疗信息传输系统,面临数据来源鉴别、节点合法性认证、数据机密性和数据完整性鉴别等安全问题,而且无线传感器节点本身的计算、存储等资源有限。文章基于零知识证明和零水印技... 基于无线体域网(Wireless Body Area Network, WBAN)实现的医疗信息传输系统,面临数据来源鉴别、节点合法性认证、数据机密性和数据完整性鉴别等安全问题,而且无线传感器节点本身的计算、存储等资源有限。文章基于零知识证明和零水印技术,结合AES加密算法,提出一种适合WBAN环境的安全的医疗信息系统设计方案,并在基于Nes C语言的MicaZ节点上实现。理论证明和实验结果均表明,文章方案可以高效安全地解决WBAN面临的问题,适用于在实际WBAN环境中安全地传输、管理医疗信息。 展开更多
关键词 无线体域网 零知识证明 零水印技术 AES 医疗信息管理
下载PDF
Chinese micro-blog sentiment classification through a novel hybrid learning model 被引量:2
7
作者 LI Fang-fang WANG Huan-ting +3 位作者 ZHAO Rong-chang LIU Xi-yao WANG Yan-zhen ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2322-2330,共9页
With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d... With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes. 展开更多
关键词 CHINESE micro-blog SHORT TEXT HYBRID LEARNING SENTIMENT classification
下载PDF
Detection of artificial pornographic pictures based on multiple features and tree mode 被引量:3
8
作者 MAO Xing-liang LI Fang-fang +1 位作者 LIU Xi-yao ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1651-1664,共14页
It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this wor... It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this work, we studied how to detect artificial pornographic pictures, especially when they are on social networks. The whole detection process can be divided into two stages: feature selection and picture detection. In the feature selection stage, seven types of features that favour picture detection were selected. In the picture detection stage, three steps were included. 1) In order to alleviate the imbalance in the number of artificial pornographic pictures and normal ones, the training dataset of artificial pornographic pictures was expanded. Therefore, the features which were extracted from the training dataset can also be expanded too. 2) In order to reduce the time of feature extraction, a fast method which extracted features based on the proportionally scaled picture rather than the original one was proposed. 3) Three tree models were compared and a gradient boost decision tree (GBDT) was selected for the final picture detection. Three sets of experimental results show that the proposed method can achieve better recognition precision and drastically reduce the time cost of the method. 展开更多
关键词 multiple feature artificial pornographic pictures picture detection gradient boost decision tree
下载PDF
Bag-of-visual-words model for artificial pornographic images recognition
9
作者 李芳芳 罗四伟 +1 位作者 刘熙尧 邹北骥 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1383-1389,共7页
It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in de... It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method. 展开更多
关键词 artificial pornographic image bag-of-words (BoW) speeded-up robust feature (SURF) descriptors visual vocabulary
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部