期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于顶点与主体区域同步检测的精准车牌定位
1
作者 徐光柱 刘高飞 +3 位作者 匡婉 万秋波 马国亮 雷帮军 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期376-387,共12页
为应对非约束环境下的车牌精定位问题,提出一种基于顶点局部区域与主体区域同步检测策略的非约束性车牌定位算法。通过删减YOLOv5网络的输出结构,训练得到可同步检测车牌及顶点区域的车牌检测网络,在兼顾精度与计算速度的前提下,实现车... 为应对非约束环境下的车牌精定位问题,提出一种基于顶点局部区域与主体区域同步检测策略的非约束性车牌定位算法。通过删减YOLOv5网络的输出结构,训练得到可同步检测车牌及顶点区域的车牌检测网络,在兼顾精度与计算速度的前提下,实现车牌顶点和主体区域的同步定位。针对一幅图中存在多个车牌区域及顶点区域存在少量漏检和误检的情况,分别设计了车牌顶点归类和单一缺失顶点预测后处理算法,借助顶点间的空间位置关系进行漏检目标预测和误检目标排查,有效改善了因场景复杂导致的个别顶点目标检测效果差的问题。所提算法在中国城市停车场数据集(CCPD)上的测试结果显示,平均精准率达99.25%,平均召回率达98.70%。所提算法不仅能够准确预测出车牌的4个顶点坐标,而且在中端GPU硬件平台上处理速度可达121帧/s,具有较好的应用价值。 展开更多
关键词 深度学习 卷积网络 视觉目标检测 非约束车牌定位 车牌顶点检测
原文传递
YOLOv3与顶点偏移估计相结合的车牌定位 被引量:5
2
作者 徐光柱 匡婉 +3 位作者 李兴维 万秋波 石勇涛 雷帮军 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第4期569-579,共11页
深层卷积神经网络(deep convolutional neural networks, DCNN)因其能够自动学习图像有效特征,被广泛应用于视觉目标检测.为克服DCNN目标检测算法大多因采用矩形检测框,而无法有效地应对非约束环境下倾斜性车牌的准确定位问题.提出一种... 深层卷积神经网络(deep convolutional neural networks, DCNN)因其能够自动学习图像有效特征,被广泛应用于视觉目标检测.为克服DCNN目标检测算法大多因采用矩形检测框,而无法有效地应对非约束环境下倾斜性车牌的准确定位问题.提出一种可同时输出矩形目标检测框与关键点的车牌定位解决方案,并具体以YOLOv3所用网络为对象,通过扩展其输出维度,增设车牌顶点相对于矩形检测输出框角点的偏移量损失,在保留其高效计算性能的前提下,训练使其可同时输出矩形检测框及车牌顶点,实现精准定位.在广泛使用的大型非约束性车牌数据集CCPD上的实验结果显示,所提算法不仅可以准确检测车牌顶点,而且能够在Base,Tilt和Weather子集上取得99%以上的定位精度.该方法还可扩展至其他需同时输出目标检测框及关键点的应用领域,具有较好的应用价值. 展开更多
关键词 深度学习 非约束车牌定位 视觉目标检测 点偏移估计 YOLOv3
下载PDF
基于级联CNNs的非约束车牌精确定位 被引量:2
3
作者 徐光柱 匡婉 +3 位作者 万秋波 雷帮军 吴正平 马国亮 《计算机工程与科学》 CSCD 北大核心 2022年第9期1665-1675,共11页
为解决单一深层卷积神经网络用于非约束场景下车牌定位时,所输出的矩形检测框对非正面车牌定位效果不佳的问题,提出将目标检测与目标分类CNN网络级联,通过检测网络得到感兴趣区域,接着利用轻量级分类网络,将车牌顶点检测问题转化为回归... 为解决单一深层卷积神经网络用于非约束场景下车牌定位时,所输出的矩形检测框对非正面车牌定位效果不佳的问题,提出将目标检测与目标分类CNN网络级联,通过检测网络得到感兴趣区域,接着利用轻量级分类网络,将车牌顶点检测问题转化为回归问题。首先,利用YOLOv3网络进行粗定位,获取图像中所有车牌的候选区域;然后,使用基于MobileNetV3改进的轻量级神经网络定位候选区域中的车牌顶点,实现车牌区域精定位;最后,通过透视变换将车牌区域投影到矩形框内实现车牌校正。实验结果表明,所提出的级联CNNs能够有效解决单一CNN目标检测网络仅能输出矩形检测框,而不适用于非约束车牌定位的问题,具有较好的应用价值。 展开更多
关键词 非约束车牌定位 卷积神经网络 YOLOv3 MobileNetV3
下载PDF
U-Net与自适应阈值脉冲耦合神经网络相结合的眼底血管分割方法 被引量:1
4
作者 徐光柱 林文杰 +3 位作者 陈莎 匡婉 雷帮军 周军 《计算机应用》 CSCD 北大核心 2022年第3期825-832,共8页
由于眼底血管结构复杂多变,且图像中血管与背景对比度低,眼底血管分割存在巨大困难,尤其是微小型血管难以分割。基于深层全卷积神经网络的U-Net能够有效提取血管图像全局及局部信息,但由于其输出为灰度图像,并采用硬阈值实现二值化,这... 由于眼底血管结构复杂多变,且图像中血管与背景对比度低,眼底血管分割存在巨大困难,尤其是微小型血管难以分割。基于深层全卷积神经网络的U-Net能够有效提取血管图像全局及局部信息,但由于其输出为灰度图像,并采用硬阈值实现二值化,这会导致血管区域丢失、血管过细等问题。针对这些问题,提出一种结合U-Net与脉冲耦合神经网络(PCNN)各自优势的眼底血管分割方法。首先使用迭代式U-Net模型凸显血管,即将U-Net模型初次提取的特征与原图融合的结果再次输入改进的U-Net模型进行血管增强;然后,将U-Net输出结果视为灰度图像,利用自适应阈值PCNN对其进行精准血管分割;在U-Net模型中引入Batch Normalization和Dropout,提高训练速度,有效缓解过拟合问题。实验结果表明,所提方法的AUC在DRVIE、STARE和CHASE_DB1数据集上分别为0.9796,0.9809和0.9827。该方法可以提取更多的血管细节,且具有较强的泛化能力和良好的应用前景。 展开更多
关键词 全卷积神经网络 眼底血管分割 脉冲耦合神经网络 U-Net 医学图像分割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部