There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploit...There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploitation of adenosine triphosphate(ATP,another overexpressed biomarker in TME)-responsive nanoreactors for tumor CDT is still challenging.Herein,the ATP-responsive iron-doped CDs(FeCDs)were firstly prepared and then coassembled with glucose oxidase(GOx)to obtain FeCDs/GOx liposomes as ATP-responsive nanoreactors.Under TME conditions,the nanoreactors initially released FeCDs and GOx.Subsequently,with the existence of ATP,iron ions were rapidly released from the FeCDs to trigger Fenton/Fenton-like reactions for generating·OH.Meanwhile,the T_(1)-weighted magnetic resonance imaging(MRI)was achieved due to the released iron ions.Moreover,the GOx converted endogenous glucose in tumor to gluconic acid and H_(2)O_(2)to satisfy the requirement of·OH generation.In vitro as well as in vivo experiments illustrated that the obtained ATP-responsive CD nanoreactors could be used as a versatile nanotheranostics for simultaneously T_(1)-weighted MRI-guided tumor CDT.This work presents a new ATP-responsive nanoreactor with selfsupplied H_(2)O_(2)for multifunctional nanotheranostic applications.展开更多
基金supported by the National Key Research and Development Program of China(2022YFA1207600)National Natural Science Foundation of China(51972315,21873110,52272052,61720106014)project ZR2023QE322 supported by Shandong Provincial Natural Science Foundation。
文摘There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploitation of adenosine triphosphate(ATP,another overexpressed biomarker in TME)-responsive nanoreactors for tumor CDT is still challenging.Herein,the ATP-responsive iron-doped CDs(FeCDs)were firstly prepared and then coassembled with glucose oxidase(GOx)to obtain FeCDs/GOx liposomes as ATP-responsive nanoreactors.Under TME conditions,the nanoreactors initially released FeCDs and GOx.Subsequently,with the existence of ATP,iron ions were rapidly released from the FeCDs to trigger Fenton/Fenton-like reactions for generating·OH.Meanwhile,the T_(1)-weighted magnetic resonance imaging(MRI)was achieved due to the released iron ions.Moreover,the GOx converted endogenous glucose in tumor to gluconic acid and H_(2)O_(2)to satisfy the requirement of·OH generation.In vitro as well as in vivo experiments illustrated that the obtained ATP-responsive CD nanoreactors could be used as a versatile nanotheranostics for simultaneously T_(1)-weighted MRI-guided tumor CDT.This work presents a new ATP-responsive nanoreactor with selfsupplied H_(2)O_(2)for multifunctional nanotheranostic applications.