基金Supported by the National Natural Science Foundation of China under Grant No.60503021(国家自然科学基金)the High-Tech Research Program of Jiangsu Province of China under Grant No.BG2006027(江苏省高技术研究计划)
文摘基于点的算法是部分可观察马尔可夫决策过程(partially observable Markov decision processes,简称POMDP)的一类近似算法.它们只在一个信念点集上进行Backup操作,避免了线性规划并使用了更少的中间变量,从而将计算瓶颈由选择向量转向了生成向量.但这类算法在生成向量时含有大量重复和无意义计算,针对于此,提出了基于点的POMDP算法的预处理方法(preprocessing method for point-based algorithms,简称PPBA).该方法对每个样本信念点作预处理,并且在生成α-向量之前首先计算出该选取哪个动作和哪些α-向量,从而消除了重复计算.PPBA还提出了基向量的概念,利用问题的稀疏性避免了无意义计算.通过在Perseus上的实验,表明PPBA很大地提高了算法的执行速度.