Pyrolytic carbon(PyC) coatings are deposited on the Nextel-440 fiber fabrics by chemical vapor deposition(CVD).The dielectric properties of the Nextel-440 fiber fabrics with PyC coatings(Nextel-440/PyC) are investigat...Pyrolytic carbon(PyC) coatings are deposited on the Nextel-440 fiber fabrics by chemical vapor deposition(CVD).The dielectric properties of the Nextel-440 fiber fabrics with PyC coatings(Nextel-440/PyC) are investigated in a temperature range from room temperature to 700℃ in X-band. Compared with the permittivity of the original Nextel-440 received,the complex permittivity of the Nextel-440/PyC(the real part εand the imaginary part ε), is significantly improved: εof the Nextel-440/PyC has a positive temperature coefficient, in contrast, εof the Nextel-440/PyC exhibits a negative temperature coefficient. Moreover, the reflection loss in units of d B is calculated. The results indicate that the microwave absorbing properties of the Nextel-440/PyC coatings is enhanced at 700℃ compared with that at lower temperatures.展开更多
Ni-B coated carbonyl iron particles (CI@Ni-B) are prepared by the electroless plating technique. The structure, morphology, and antioxidant properties of the CI@Ni-B particles are analyzed. The results demonstrate t...Ni-B coated carbonyl iron particles (CI@Ni-B) are prepared by the electroless plating technique. The structure, morphology, and antioxidant properties of the CI@Ni-B particles are analyzed. The results demonstrate that the CI particles have been coated with intact spherical-shell Ni-B coating, indicating the core-shell structure of CI@Ni-B particles, and the Ni-B coating can prevent the further oxidation of the CI particles. Compared with the raw CI particles/paraffin coatings with the same coating thickness of 2.0mm and particles content of 70%, the CI@Ni-B particles/paraffin coatings possess higher microwave absorption (the RL exceeding -10 dB is obtained in the whole X band (8.2-12.4GHz) with minimal RL of -3f.OdB at 9.2GHz).展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51072165)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China(Grant Nos.KP201307 and SKLSP201313)
文摘Pyrolytic carbon(PyC) coatings are deposited on the Nextel-440 fiber fabrics by chemical vapor deposition(CVD).The dielectric properties of the Nextel-440 fiber fabrics with PyC coatings(Nextel-440/PyC) are investigated in a temperature range from room temperature to 700℃ in X-band. Compared with the permittivity of the original Nextel-440 received,the complex permittivity of the Nextel-440/PyC(the real part εand the imaginary part ε), is significantly improved: εof the Nextel-440/PyC has a positive temperature coefficient, in contrast, εof the Nextel-440/PyC exhibits a negative temperature coefficient. Moreover, the reflection loss in units of d B is calculated. The results indicate that the microwave absorbing properties of the Nextel-440/PyC coatings is enhanced at 700℃ compared with that at lower temperatures.
基金Supported by the Natural Science Foundation of Shaanxi Province under Grant Nos 2011JQ2007 and 2012SXJJ005.
文摘Ni-B coated carbonyl iron particles (CI@Ni-B) are prepared by the electroless plating technique. The structure, morphology, and antioxidant properties of the CI@Ni-B particles are analyzed. The results demonstrate that the CI particles have been coated with intact spherical-shell Ni-B coating, indicating the core-shell structure of CI@Ni-B particles, and the Ni-B coating can prevent the further oxidation of the CI particles. Compared with the raw CI particles/paraffin coatings with the same coating thickness of 2.0mm and particles content of 70%, the CI@Ni-B particles/paraffin coatings possess higher microwave absorption (the RL exceeding -10 dB is obtained in the whole X band (8.2-12.4GHz) with minimal RL of -3f.OdB at 9.2GHz).