A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model cor...A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.展开更多
Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustain...Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.展开更多
基金financially supported from the National Key Research and Development Program of China(No.2019YFC1803601)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0801)+1 种基金the Postgraduate Innovative Project of Central South University,China(No.2023XQLH068)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.QL20230054)。
文摘A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.
基金funded by the National Key Research and Development Program of China(No.2019YFC1803601)the National Natural Science Foundation of China(No.42177392)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0122)。
基金Projects(41701587,41877511)supported by the National Natural Science Foundation of China
文摘Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.