Nanocrystalline Cu-5 wt%Cr alloy powders were fabricated by mechanical alloying (MA), The effects of MA processing parameters on the crystallite size, solid solubility, and microstructures of the Cu- 5 wt%Cr alloys ...Nanocrystalline Cu-5 wt%Cr alloy powders were fabricated by mechanical alloying (MA), The effects of MA processing parameters on the crystallite size, solid solubility, and microstructures of the Cu- 5 wt%Cr alloys were investigated including type and size distribution of the grinding medium and ball-topowder weight ratio (BPR). The results show that the crystallites were refined effectively and solid solubility of Cr in Cu was extended when heavier ball and higher BPR were adopted. The maximum solubility is extended up to 5.6 at% (namely 4.6 wt%) Cr in Cu by use of a combination of large and small size WC-Co balls with BPR of 30:1. A Cn-5 wt%Cr supersaturated solid solution alloy bulk is obtained by spark plasma sintering the as-milled powders at 900 ℃ for 5 min.展开更多
The ultrafine crystalline CuCr50(Cr 50 wt%) alloys were fabricated by a combination of mechanical alloying and spark plasma sintering process. The effects of milling time on crystallite size and solid solubility of ...The ultrafine crystalline CuCr50(Cr 50 wt%) alloys were fabricated by a combination of mechanical alloying and spark plasma sintering process. The effects of milling time on crystallite size and solid solubility of the CuCr50 composite powders were investigated. The results showed that crystallite size of powders decreases gradually and solid solubility of Cr in Cu was extended with increasing milling time. The minimal crystallite size about 10 nm and the maximum solid solubility about 8.4 at%(i e, 7 wt%) were obtained at 60 h. The microstructure of ultrafine crystalline CuCr50 alloy was analyzed by SEM and TEM, which contains two kinds of size scale Cr particles of 2 μm and 50-150 nm, distributing homogeneously in matrix, respectively. The arc erosion characteristics of ultrafine crystalline CuCr50 alloy were investigated by the vacuum contact simulation test device in low D.C. voltage and low current(24 V/10 A). A commercial microcrystalline CuCr50 alloy was also investigated for comparison. Experiments indicate that the cathode mass loss of ultrafine crystalline CuCr50 contact material is higher than that of microcrystalline CuCr50 material, but its eroded surface morphology by the arc is uniform without obvious erosion pits. While the surface of microcrystalline CuCr50 contact is seriously eroded in local area by the arc, an obvious erosion pit occurred in the core part. Therefore, the ability of arc erosion resistance of ultrafine crystalline CuCr50 alloy is improved compared to that of microcrystalline CuCr50 material.展开更多
基金Funded by Alstom Grid China Technology Centre and the National Basic Research Program of China (973 Program)(No.2012CB619600)
文摘Nanocrystalline Cu-5 wt%Cr alloy powders were fabricated by mechanical alloying (MA), The effects of MA processing parameters on the crystallite size, solid solubility, and microstructures of the Cu- 5 wt%Cr alloys were investigated including type and size distribution of the grinding medium and ball-topowder weight ratio (BPR). The results show that the crystallites were refined effectively and solid solubility of Cr in Cu was extended when heavier ball and higher BPR were adopted. The maximum solubility is extended up to 5.6 at% (namely 4.6 wt%) Cr in Cu by use of a combination of large and small size WC-Co balls with BPR of 30:1. A Cn-5 wt%Cr supersaturated solid solution alloy bulk is obtained by spark plasma sintering the as-milled powders at 900 ℃ for 5 min.
基金Funded by the National Natural Science Foundation of China(No.51575406)the Science Research Foundation for Wuhan Institute of Technology(No.K201519)
文摘The ultrafine crystalline CuCr50(Cr 50 wt%) alloys were fabricated by a combination of mechanical alloying and spark plasma sintering process. The effects of milling time on crystallite size and solid solubility of the CuCr50 composite powders were investigated. The results showed that crystallite size of powders decreases gradually and solid solubility of Cr in Cu was extended with increasing milling time. The minimal crystallite size about 10 nm and the maximum solid solubility about 8.4 at%(i e, 7 wt%) were obtained at 60 h. The microstructure of ultrafine crystalline CuCr50 alloy was analyzed by SEM and TEM, which contains two kinds of size scale Cr particles of 2 μm and 50-150 nm, distributing homogeneously in matrix, respectively. The arc erosion characteristics of ultrafine crystalline CuCr50 alloy were investigated by the vacuum contact simulation test device in low D.C. voltage and low current(24 V/10 A). A commercial microcrystalline CuCr50 alloy was also investigated for comparison. Experiments indicate that the cathode mass loss of ultrafine crystalline CuCr50 contact material is higher than that of microcrystalline CuCr50 material, but its eroded surface morphology by the arc is uniform without obvious erosion pits. While the surface of microcrystalline CuCr50 contact is seriously eroded in local area by the arc, an obvious erosion pit occurred in the core part. Therefore, the ability of arc erosion resistance of ultrafine crystalline CuCr50 alloy is improved compared to that of microcrystalline CuCr50 material.