Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pres...Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pressure plasma jet (APPJ) system. (a) PE films were directly modified by APPJ using a gas mixture of He and 02. (b) Acrylic acid (AA) was introduced into the system and a polymer acrylic acid (PAA) coating was deposited onto the PE films. (c) AA was grafted onto the PE surface activated by plasma pre-treatment. It was found that the hydrophilicity of the PE films was significantly improved for all the three methods. However, the samples modified by Process (a) showed hydrophobicity recovery after a storage time of 20 days while no significant change was found in samples modified by Process (b) and Process (c). The Fourier transform infrared spectroscopy (FTIR) results indicated that the most intensive C=O peak was detected on the PE surface modified by Process (c). According to the X-ray photoelectron spectroscopy (XPS) analysis, the ratios of oxygen-containing polar groups for samples modified by Process (b) and Process (c) were higher than that modified by Process (a).展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11175157)the Zhejiang Provincial Key Innovation Team,China(Grant No.2012R10038)the 521 Talent Project of Zhejiang Sci-Tech University,China
文摘Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pressure plasma jet (APPJ) system. (a) PE films were directly modified by APPJ using a gas mixture of He and 02. (b) Acrylic acid (AA) was introduced into the system and a polymer acrylic acid (PAA) coating was deposited onto the PE films. (c) AA was grafted onto the PE surface activated by plasma pre-treatment. It was found that the hydrophilicity of the PE films was significantly improved for all the three methods. However, the samples modified by Process (a) showed hydrophobicity recovery after a storage time of 20 days while no significant change was found in samples modified by Process (b) and Process (c). The Fourier transform infrared spectroscopy (FTIR) results indicated that the most intensive C=O peak was detected on the PE surface modified by Process (c). According to the X-ray photoelectron spectroscopy (XPS) analysis, the ratios of oxygen-containing polar groups for samples modified by Process (b) and Process (c) were higher than that modified by Process (a).