This letter reports on the generation and characteristics of a large-scale dielectric barrier discharge plasma jet at atmospheric pressure. With appropriate parameters, diffuse plasma with a 50×5 mm2 cross-sectio...This letter reports on the generation and characteristics of a large-scale dielectric barrier discharge plasma jet at atmospheric pressure. With appropriate parameters, diffuse plasma with a 50×5 mm2 cross-sectional area is obtained. The characteristics of the discharges are diag- nosed by using electrical and optical methods. In addition to being generated in helium, plasma is also generated in a mixed gas of helium and oxygen. The oxygen atomic radiant intensity (3p5P→ 3s5S, 3p3P→3s3S transition) is not proportional to the proportion of oxygen in the gas mixture, as shown by the experimental results.展开更多
An experimental investigation of a nanosecond pulsed dielectric barrier discharge in atmospheric air is presented. In the setup a quartz tube was inserted between the cone and plane electrodes in the direction paralle...An experimental investigation of a nanosecond pulsed dielectric barrier discharge in atmospheric air is presented. In the setup a quartz tube was inserted between the cone and plane electrodes in the direction parallel to the electric field. It was shown that the appearance and property of the discharge were sensitive to the size and the position of the quartz tube. When the tube was placed on the grounded plane electrode, the discharge intensity was found to improve gradually with the increase in the diameter of the quartz tube. Furthermore, with an appropriate distance between the bottom edge of the quartz tube and the plane electrode, the discharge tended to exhibit better performance in generating homogeneous diffusive plasma. The possible mechanism is discussed.展开更多
基金supported by National Natural Science Foundation of China(Nos.10775027,50807011)
文摘This letter reports on the generation and characteristics of a large-scale dielectric barrier discharge plasma jet at atmospheric pressure. With appropriate parameters, diffuse plasma with a 50×5 mm2 cross-sectional area is obtained. The characteristics of the discharges are diag- nosed by using electrical and optical methods. In addition to being generated in helium, plasma is also generated in a mixed gas of helium and oxygen. The oxygen atomic radiant intensity (3p5P→ 3s5S, 3p3P→3s3S transition) is not proportional to the proportion of oxygen in the gas mixture, as shown by the experimental results.
基金supported by National Natural Science Foundation of China (No.10775027)the Natural Science Foundation of Liaoning Province of China (No.20072179)
文摘An experimental investigation of a nanosecond pulsed dielectric barrier discharge in atmospheric air is presented. In the setup a quartz tube was inserted between the cone and plane electrodes in the direction parallel to the electric field. It was shown that the appearance and property of the discharge were sensitive to the size and the position of the quartz tube. When the tube was placed on the grounded plane electrode, the discharge intensity was found to improve gradually with the increase in the diameter of the quartz tube. Furthermore, with an appropriate distance between the bottom edge of the quartz tube and the plane electrode, the discharge tended to exhibit better performance in generating homogeneous diffusive plasma. The possible mechanism is discussed.