针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squa...针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM)。首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息。IFSLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性。实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证。结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性。展开更多
随着医学教育改革的不断推进,以学生为中心,以成果导向教育(outcome based education, OBE)为目标,构建的新型教学模式越来越受到重视。组织和细胞培养技术是基础与临床各学科进行科研创新实践与生产的必备基础。本文通过探索在OBE理念...随着医学教育改革的不断推进,以学生为中心,以成果导向教育(outcome based education, OBE)为目标,构建的新型教学模式越来越受到重视。组织和细胞培养技术是基础与临床各学科进行科研创新实践与生产的必备基础。本文通过探索在OBE理念指导下,虚拟仿真教学模式在组织和细胞培养技术课程中的应用。为探索医学基础课程,尤其是偏重实践型课程教学提供新思路与新模式。展开更多
文摘针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM)。首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息。IFSLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性。实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证。结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性。
文摘随着医学教育改革的不断推进,以学生为中心,以成果导向教育(outcome based education, OBE)为目标,构建的新型教学模式越来越受到重视。组织和细胞培养技术是基础与临床各学科进行科研创新实践与生产的必备基础。本文通过探索在OBE理念指导下,虚拟仿真教学模式在组织和细胞培养技术课程中的应用。为探索医学基础课程,尤其是偏重实践型课程教学提供新思路与新模式。