In this Letter, we propose a broadband near-infrared(NIR) absorber based on the phase transition material VO2.By designing different arrangements of the VO2 square lattice at high and low temperatures on fused silica ...In this Letter, we propose a broadband near-infrared(NIR) absorber based on the phase transition material VO2.By designing different arrangements of the VO2 square lattice at high and low temperatures on fused silica substrates, the absorption rate reaches more than 90% in the entire 1.4–2.4 μm range. Using a finite-difference time-domain simulation method and thermal field analysis, the results prove that the absorber is polarizationindependent and has wide-angle absorption for incident angles of 0°–70°. The proposed absorber has a smoother absorption curve and is superior in performance, and it has many application prospects in remote sensing geology.展开更多
基金the National High Technology Research and Development Program of China(No. 2006AA03Z348)the Foundation for Key Program of Ministry of Education,China (No. 207033)+1 种基金the Key Science and Technology Research Project of Shanghai Committee,China (No. 10ZZ94)the Shanghai Talent Leading Plan,China (No. 2011-026)。
文摘In this Letter, we propose a broadband near-infrared(NIR) absorber based on the phase transition material VO2.By designing different arrangements of the VO2 square lattice at high and low temperatures on fused silica substrates, the absorption rate reaches more than 90% in the entire 1.4–2.4 μm range. Using a finite-difference time-domain simulation method and thermal field analysis, the results prove that the absorber is polarizationindependent and has wide-angle absorption for incident angles of 0°–70°. The proposed absorber has a smoother absorption curve and is superior in performance, and it has many application prospects in remote sensing geology.